IPAC WFIRST Microlensing Primer Series IV: Results from and Future Directions for Space-based Microlensing Surveys

IPAC WFIRST Microlensing Primer Series

 I. Basic Introduction to the Methodology and Theory of Microlensing Searches for Exoplanets W, 21/Sept: Yossi Shvartzvald

II. Lens Companion Detection and Characterization W, 28/Sept: Yossi Shvartzvald

III. Results from and Future Directions for Ground-based Microlensing Surveys W, 12/Oct: Calen B. Henderson

IV. Results from and Future Directions for Space-based Microlensing Surveys W, 2/Nov: Calen B. Henderson

Observational Microlensing

Calen B. Henderson

Brightness

IPAC WFIRST µlensing Series: IV

Science Goals: Quality versus Quantity

Addressing (relatively) Unexplored Demographic Questions

Free-floating planets

Galactic distribution

Cold and bound exoplanets

Calen B. Henderson

1

2

3

Planetary Mass Budget

Microlensing (FFPs)

Direct Imaging

Transit + RV + Microlensing

Henderson+ (2016), PASP, 128, 124401

Calen B. Henderson

Galactic Distribution of Exoplanets

Henderson+ (2016), PASP, 128, 124401

Calen B. Henderson

Why conduct microlensing from space?

Standard Observables

Single Object Lens

Einstein Timescale: (Finite Source Size: Ţ?

Two-body Lens

Mass Ratio: q Projected Separation: s

Parameters

M

D

Lens Mass:

Lens System Distance:

Calen B. Henderson

IPAC WFIRST µlensing Series: IV

Why conduct microlensing from space?

Standard Observables

$M_{I} = \Theta_{E} / (\kappa \pi_{E})$

alameters

Lens System Distance: D_l

Lens Mass: M_l

Calen B. Henderson

http://www.astronomy.ohio-state.edu/~henderson/k2c9_parallax_animations/

Calen B. Henderson

Found at:

http://www.astronomy.ohio-state.edu/~henderson/k2c9_parallax_animations/

Calen B. Henderson

Found at:

http://www.astronomy.ohio-state.edu/~henderson/k2c9_parallax_animations/

Calen B. Henderson

Found at:

Found at:

http://www.astronomy.ohio-state.edu/~henderson/k2c9_parallax_animations/

Calen B. Henderson

Calen B. Henderson

Calen B. Henderson IPAC WFIRST µlensing Series: IV

Microlens Parallax Vector of OGLE-2014-BLG-0124L NASA / JPL-Caltech / A. Udalski (Warsaw University Observatory)

Calen B. Henderson

Spitzer Space Telescope • IRAC sig15-005 $M_{p} = 0.5 M_{J}$ $M_{\star} = 0.7 M_{\odot}$ $D_{I} = 4.1 \text{ kpc}$ $a_{\text{inst,proj}} = 3.1 \text{ AU}$

Jet Propulsion Laboratory California Institute of Technology

Microlens Parallax Vector of OGLE-2014-BLG-0124L NASA / JPL-Caltech / A. Udalski (Warsaw University Observatory) Spitzer Space Telescope • IRAC sig15-005

 $\sigma_{\pi_{E}}$ (OGLE) ≈ 22%

Calen B. Henderson

IPAC WFIRST µlensing Series: IV

 $A_{\rm c} = 0.5 \, {\rm M}_{\rm H}$

 $M_{*} = 0.7 M_{\odot}$

 $D_{1} = 4.1 \text{ kpc}$

 $a_{inst,proj} = 3.1 \text{ AU}$

Microlens Parallax Vector of OGLE-2014-BLG-0124L Spitzer NASA / JPL-Caltech / A. Udalski (Warsaw University Observatory)

Spitzer Space Telescope • IRAC sig15-005 $M_{p} = 0.5 M_{J}$ $M_{\star} = 0.7 M_{\odot}$ $D_{l} = 4.1 \text{ kpc}$ $a_{\text{inst,proj}} = 3.1 \text{ AU}$

σ_{π⊏}(OGLE) ≈ 22%

Calen B. Henderson

IPAC WFIRST µlensing Series: IV

Spitzer) $\approx 2.5\%$

Galactic Distribution of Exoplanets

Milky Way Galaxy

Most Known Exoplanets

OGLE-2014-BLG-0124L

Microlensing Exoplanets

Our Solar System

Credit: NASA JPL/Caltech

Calen B. Henderson

IPAC WFIRST µlensing Series: IV

OGLE-2015-BLG-0966

$M_{p} \approx 21 M_{Earth}$ $M_{\star} \approx 0.38 M_{\odot}$ $D_{l} \approx 3 \text{ kpc}$

 $[\sigma \approx 10\%]$

Street+ (2016), ApJ, 819, 93

Calen B. Henderson

Limitations of Spitzer Campaigns

Udalski+ (2015) ApJ, 799, 237

Calen B. Henderson

Enter K2's Campaign 9

Area* 3.74 deg² Cadence 30 min Events* 106 (expected) Start 22/April, 14:04 UT End 2/July, 22:34 UT Duration 71.4 days

Found in Henderson+ (2016), PASP, 128, 124401 Uses methodology of Poleski (2016) MNRAS, 455, 3656

> * Postage stamps added later to C9a (34) & C9b (61) target lists for ongoing events (70 unique)

Calen B. Henderson

Key Contributors to K2C9

Microlensing Science Team

David Bennett Senior Research Scientist NASA Goddard

Radek Poleski Research Associate The Ohio State University

Rachel Street Project Scientist Las Cumbres Observatory Global Telescope.

Scott Gaudi

Professor of Astronomy, Thomas Jefferson Chair The Ohio State University, JPL

Professor of Physics and Data Science

Calen B. Henderson NASA fellow JPL/Caltech

David W. Hogg

Matthew Penny Sagan Fellow

New York University

The Ohio State University

Tom Barclay K2 Guest Observer Office Director NASA Ames

> Geert Barentsen K2 Guest Observer Office NASA Ames

> > **Steve Howell** Project Scientist NASA Ames

K2 Project Office

California Institute of Technology

Jet Propulsion Laboratory

IPAC WFIRST µlensing Series: IV

Calen B. Henderson

Automated Survey

Henderson+ (2016), PASP, 128, 124401

Calen B. Henderson

IPAC WFIRST µlensing Series: IV

Automated Survey

High-cadence Follow-up

Henderson+ (2016), PASP, 128, 124401

Calen B. Henderson

IPAC WFIRST µlensing Series: IV

Automated Survey Multiband Monitoring

High-cadence Follow-up

Henderson+ (2016), PASP, 128, 124401

Calen B. Henderson

IPAC WFIRST µlensing Series: IV

Automated Survey Multiband Monitoring

High-cadence Follow-up Near-infrared Source Fluxes

Henderson+ (2016), PASP, 128, 124401

Calen B. Henderson

Preliminary K2C9 Parallax Inventory

Total events109 (179)Bound Planets3FFP Candidates9Stellar Binaries8Long-timescale13

Values are, generally, lower limits!!

Calen B. Henderson

Bound Planetary Candidate!

From Valerio Bozza's real-time modeling: http://www.fisica.unisa.it/GravitationAstrophysics/RTModel.htm

Calen B. Henderson

Courtesy K. Colón

Downloaded from The MAST

Downloaded from The MAST

Moving Forward – Photometry Challenges: Blending in Kepler

Henderson+ (2016), PASP, 128, 124401

Calen B. Henderson

From *K2* Project Office Courtesy K. Colón

Moving Forward – Photometry Challenges: Kepler Event Recovery

Input pixels

Causal Pixel Model Microlensing Model Martine Martin Martin

IPAC WFIRST µlensing Series: IV

Calen B. Henderson

Moving Forward – Photometry Challenges: Kepler Event Recovery

Raw Pixel Light Curve (i.e., data!)

Causal Pixel Model

Output light curve!

Calen B. Henderson

Moving Forward – Photometry Challenges: Kepler Event Recovery

Dun Wang Graduate Student, NYU

Raw Pixel Light Curve (i.e., data!)

iusal Pixel Model

Output light curve!

Calen B. Henderson

Moving Forward: *K2*C9 Synergies

1

Henderson+ (2016), PASP, 128, 124401

Calen B. Henderson

Moving Forward: *K2*C9 Synergies

K20

1

2

Calen B. Henderson

Moving Forward: *K2*C9 Synergies

K2C1

Non-microlensing science!

Calen B. Henderson

2

3

IPAC WFIRST µlensing Series: IV

Community Interface

K2C9 Visibility Tool

Good news! =)

The position is being observed by K2.

Created by:

Calen B. Henderson

G. Barentsen, T. Barclay, R. Poleski http://k2c9.herokuapp.com/

Welcome to ExoFOP

The Exoplanet Follow-up Observing Program (ExoFOP) website is designed to optimize resources and facilitate collaboration in follow-up studies of exoplanet candidates. ExoFOP serves as a repository for community-gathered follow-up data by allowing upload and display of data and derived astrophysical parameters.

Kepler (CFOP)

1,003 confirmed planets

7,557 stars

K2 Microlensing Events

GLE-2016-BLG-127

GLE-2016-BLG-126

GLE-2016-BLG-126

(518) Ogle Name

K2 (ExoFOP)

142,589 targets

32 confirmed planets

K2 Campaign 9

Microlensing survey Coming soon!

Go to CFOP >>

17:59:44.22

17:55:34.8

18:03:27.79

18:06:52.04

18:09:15.86

Go to ExoFOP-K2 >>

>> Go to K2 Campaign 9 >>

Download al:
Test
Current JD = 245774.650
Rest
With last 24 kr
Line
<thLine</th>
Line
<thLine</t

GLE-2016-BLG-1252 18:13:29.59 -27:54:25.3 GLE-2016-BLG-1253 18:19:40.31 -26:30:43.1 2457570.186 4.316 GLE-2016-BLG-1255 17:45:37.07 -22:30:55.3 2457570 186 OGLE-2016-BLG-125 17:48:33.56 -22:53:41.8 17:44:15.45 -26:31:13.2 18-18-22.12 -23-46-43.8 Created and curated by: R. Akeson, R. Street

Microlens Parallax Satellite III. WFIRST

Calen B. Henderson

Microlens Parallax Satellite III. WFIRST

Spergel+ (2015) arXiv:1503.03757

Launch 2024/2025 Orbit L2 Survey Duration 432 d (672 d seasons) Survey Area 0.281 deg² Number of fields 10 Bound Exoplanets ~3000 Free-floating ~300

Calen B. Henderson

Microlens Parallax Satellite III. WFIRST

Bound Exoplanet

Free-floating

Figure 2-33: WFIRST-AFTA will be uniq Style of a liv (2015) arXive1503t03757to the mass of Pluto. On the left is shown the 95% confidence upper limit on the abundance of free-floating objects that WFIRST-AFTA would infer if it did not detect any free-floating planets. The abundance is plotted as the total mass of ejected objects per star, rather than the number of ejected objects. For comparison, we show (a) the Jupiter-mass free-floating planet abundance that was measured by Sumi et al. (2011), (b) the mass distribution of solar system objects, (c) the Cassan et al. (2012) and so function that was measured by Sumi et al. (2011), (b) the mass distribution of solar system objects, (c) the Cassan et al. (2012) and so function that was measured for the free-floating planet realization in Figure 2-31 and yields in Table 2-4et(d) predict aboratory callornia institute of Technology tions of the number of planetesimals and planets ejected in dynamical simulations of newly-formed systems with

Microlens Parallax Satellite III. WFIRST Preparatory Work

3D Optical-to-NIR Extinction Map

Calen B. Henderson

Come Learn and Discuss Microlensing!

Ushering in the New Age of Microlensing from Space

February 1-3, 2017 • Pasadena Sheraton, Pasadena, CA 21st International Microlensing Conference

January 31, 2017 · Caltech, Pasadena, CA 1/2 day Microlensing Workshop

• Breaking results from *K2's* Campaign 9

- Progress in *Spitzer's* program of obtaining satellite parallaxes
- Ground-based surveys and advances in theory

Topics Include:

*K2*C9! -

Spitzer!

WFIRST!

Don't worry: Conference preceded by (free!) half-day microlensing tutorial!

mlens2017@ipac.caltech.edu

http://nexsci.caltech.edu/conferences/2017/microlensing

Calen B. Henderson

IPAC WFIRST µlensing Series: IV

