Lightweight Space Coronagraph Simulator

https://github.com/leonidprinceton/LightweightSpaceCoronagraphSimulator

Leonid Pogorelyuk

Lightweight Simulator

https://github.com/leonidprinceton/LightweightSpaceCoronagraphSimulator

- Testing dark hole maintenance algorithms
 - in the linear regime after dark hole creation
 - with realistic effects (broadband, jitter, etc.)
- Testing post-processing algorithms (e.g. projections on instrumental modes, Xin *et al.*)
- Based on FALCO (https://github.com/ajeldorado/falco-matlab)
- Currently only Roman HLC is supported

Dark Hole Maintenance Example

- Zernike and DM drift
- LOWFS residuals, dark current and shot noise
- Broadband measurements

As a FALCO Derivative

	FALCO	Lightweight Simulator
Pros	 Full propagation (large perturbation) Up to date Roman model Dark hole creation 	 Fast and simple to use Rudimentary models for LOWFS residual jitter, wavefront drift, DM drift, measurement noise Python
Cons	 Not readily extendable with wavefront maintenance MATLAB 	 Linear regime (only small perturbations) Only HLC model for now

Method of Operation

- Electric field representation
- nominal E-field Zernike sensitivity matrix control Jacobian C = # channels $\mathbf{E} = \mathbf{E}_0 + G^V \mathbf{v} + G^U \mathbf{u} \in \mathbb{C}^{cN}$ • Coherent intensity $\mathbf{I}^S = B \cdot |E|^{\circ 2} \in \mathbb{R}^N$ jitter modes covariance • Jitter intensity $\mathbf{I}^J = B \cdot \text{diag} \{G^V V (G^V)^*\}$
 - Total intensity $\mathbf{I} = \mathbf{I}^S + \mathbf{I}^J + \mathbf{I}^D \mathbf{d}$ ark current
 - Measurements $y_i \sim poisson(I_i \cdot \alpha), 1 \le i \le N$

intensity-to-photons conversion

Functionality

- 6 wavelengths
- DM Jacobian
- Sensitivity to 136 Zernikes
- LOWFS residual jitter
- Off-axis PSFs

intensity with jitter

off-axis PSF

sensitivity to Z12

actuator poke

Summary

https://github.com/leonidprinceton/LightweightSpaceCoronagraphSimulator

- Linear regime approximation
- Requires only basic Python libraries
- Includes some realistic effects
- Will be updated with OS9-compatible Jacobians (that include polarization) in the near future