LABORATORY RESULTS OF A DARK HOLE MAINTENANCE ALGORITHM FOR HIGH CONTRAST IMAGING

SUSAN REDMOND

PRINCETON UNIVERSITY

STSC

UNIVERSITY

OVERVIEW

- Background: Direct Imaging of Exoplanets
- Motivation: Wavefront Error Drifts
- Implementation: How does the algorithm work?
- Results: Experiments on the High-contrast imager for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute

DIRECT IMAGING OF EXOPLANETS

Direct Imaging	Drifts	DH Maintenance	HiCAT Results	Future Work

CREATING HIGH CONTRAST REGION: HICAT HARDWARE

High-contrast imager for complex aperture telescopes Soummer 2019, Moriarty 2019

CREATING HIGH CONTRAST REGION: HICAT HARDWARE

FOCAL PLANE WAVEFRONT CONTROL (FPWC)

FPWC IN ACTION

WAVEFRONT ERROR DRIFTS

SYSTEM DRIFTS

SLOW SYSTEM DRIFTS IN HICAT

- Slow system drifts are present in every optical system
- Degradation of contrast makes detection and characterization of exoplanets more difficult
- Common causes:
 - Thermal diffusion
 - Time to reach thermal steady state
 - Thermal gradient changes
 - Changing telescope roll angle
 - Gravity (ground telescopes)
 - Change in elevation angle

MANUALLY ADDED DRIFT

DEFORMABLE MIRROR ACTUATOR RANDOM WALK DRIFT

- $u_{\text{open loop}}^{k+1} += \mathcal{N}(0, \sigma_{drift}^2 I)$
- Each actuator does a random walk with standard deviation of $\sigma_{drift} = 0.01 nm/iteration$ starting at the final Stroke-Min DM command
- Contrast degrades by a factor of 2 in 1.5 hrs

IMPLEMENTATION OF THE DARK HOLE MAINTENANCE ALGORITHM

 Direct Imaging
 Drifts
 Algorithm
 HiCAT Results
 Future Work

HIGH LEVEL MAINTENANCE PROCEDURE (POGORELYUK 2019)

- Dig dark hole
- Use final DM command (u_0) and Electric Field Estimate (\hat{E}_0) as initial conditions for maintenance algorithm
- Turn on DM random walk drift and start maintenance algorithm
- Advantages:
 - More science images
 - Easier post-processing (Pogorelyuk, 2019)
 - Can use shorter exposures

FPWC WITH DM ACTUATOR RANDOM WALK DRIFT

States: Electric field at each pixel in the dark hole on the science camera

Control: 2 x 952 Deformable Mirror actuators

Measurement: Intensity at each science camera pixel

STEP 2: APPLY CONTROL:

$u_{tot}^{k+1} = u_0 + \Delta u_{opt}^{k+1} + \delta u_{dith}^{k+1} + \delta u_{drift}^{k+1}$

STEP 2: ELECTRIC FIELD CONJUGATION

 $\Delta \mathbf{u}_{\rm opt}^{k+1} = -\left(\mathbf{G}\mathbf{G}^{\rm T} - \alpha \mathbf{I}\right)^{-1} \mathbf{G}^{\rm T} \, \hat{E}^{k}$ Jacobian Estimate Regularization Parameter

STEP 2: DITHER

Dither Command:

- Acts as a 'probe'
- Increases phase diversity to improve estimate
- Random displacement applied to each actuator with standard deviation σ_{dith}

 $\delta \mathbf{u}_{dith}^{k+1} \sim \mathcal{N}(0, \sigma_{dith}^2 \mathbf{I})$

STEP 2: DRIFT

Drift Command:

- Manually inputs a drift/instability into the system
- Simple case: each actuator does a random walk from a normal distribution with standard deviation σ_{drift}
- Future drifts could be Zernike modes, lab temperature, etc.

 $\delta \mathbf{u}_{\text{drift}}^{k+1} = \delta \mathbf{u}_{\text{drift}}^{k} + \mathcal{N}(0, \sigma_{drift}^2 \boldsymbol{I})$

STEP 3: REPEAT AS DESIRED

HICAT RESULTS

Direct Imaging	Drifts	Algorithm	HiCAT Results	Future Work

LONG MAINTENANCE RUN PERFORMANCE

- Open loop mean contrast degrades by a factor of 4 over the six hour experiment
- Closed loop mean contrast is maintained at 8.5×10^{-8} within a standard deviation of 2.4×10^{-8}

RAW EFFECT OF DITHERING DMS WITHOUT CONTROL

- Without any control, dithering the DMs degrades the contrast*
 - $\mathbf{u} = \mathbf{u}_0 + \mathcal{N}(0, \sigma_{dith}^2 \mathbf{I})$
 - *This depends on the initial contrast, if the dither is below a certain threshold the contrast does not change

RAW EFFECT OF DITHERING DMS

- We can then fit the data and predict the 'limiting' contrast based on the dither
- This would suggest that we want to choose a dither of zero BUT this is not the whole story, we have an estimator and control loop too!

EFFECT OF DITHER ON MAINTENANCE PERFORMANCE

- Small dither $(5 \times \sigma_{drift})$:
 - Shallow slope
 - Takes longer to shoot off and recover
 - Reaches original contrast at ~200 iterations
- Large dither $(40 \times \sigma_{drift})$:
 - Steep slope pre and post contrast
 - Asymptotes to higher final contrast
- Medium dither $(20 \times \sigma_{drift})$:
 - Smaller offshoot than large dither
 - Steeper slope than small dither
 - Asymptotic contrast is on par with original state

DITHER AND ESTIMATE CONVERGENCE

Note: Estimate error has same trend as contrast. The better the estimate, the more effective the control and the better the contrast.

DITHER AND ESTIMATE CONVERGENCE

- Looking at three main parameters:
 - I. Peak estimation error [contrast]
 - 2. Number of iterations until peak [iterations]
 - 3. Asymptotic estimation error [contrast]

CHOOSING THE 'BEST' DITHER

- Ultimate Goal:
 - Estimator converges fast
 - Estimate error is small
 - Final Contrast is small
- Caveats:
 - This is for a single DM drift
 - $\sigma_{drift} = 0.01 \, nm/iter$
 - Repeating this process for various drifts shows that for best performance:

 $\sigma_{dither} \approx 20 \times \sigma_{drift}$

LABVERIFICATION!

- The same trend is observed in the lab!
- Large dither limits steady state contrast
- Small dither takes a long time to recover
- $\sigma_{dither} \approx 20 \times \sigma_{drift}$ performs the best

SUMMARY AND FUTURE WORK

Direct Imaging	Drifts	Algorithm	HiCAT Results	Future Work

SUMMARY AND FUTURE WORK

- The EKF + EFC dark hole maintenance algorithm presented here can maintain contrast levels of 7×10^{-8} in the presence of a DM random walk drift for thousands of iterations / 6 hrs
- Next steps:
 - Use the recently installed an Iris AO Deformable primary mirror to introduce drifts
 - Drift using Zernike modes instead of random walk of each actuator
 - Use the temperature as the drift
 - Add broadband capabilities
 - Translate testbed results into mission implications

IRIS AO Segmented Mirror

ACKNOWLEDGEMENTS

Massachusetts Institute of Technology

Leonid Pogorelyuk

SUSAN REDMOND

VALIDATION OF REALTIME DRIFT CORRECTION

- Goal: Show that the open loop electric field is drifting and the estimator+controller is correcting for it in real time.
- Algorithm:
 - I. Take close loop image
 - a. Apply closed loop DM command: $u^{CL}(k+1) = u_0 + \Delta u_{opt}(k) + \delta u_{dith}(k) + \delta u_{drift}(k)$
 - b. Take image
 - 2. Take open loop image
 - a. Apply open loop DM command: $u^{OL}(k + 1) = u_0 + \delta u_{drift}(k)$
 - b. Take image
 - 3. Advance Estimator using closed loop data
 - 4. Obtain new optimal DM command using closed loop data
 - 5. Repeat

VALIDATION OF REALTIME DRIFT CORRECTION

