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Overview
1. Motivation for Binary Star Imaging
2. Multi-Star Imaging Mode with CGI
3. Multi-Star Wavefront Control Sensitivities
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Plotting hypothetical exo-Earth
contrast for all stars within 20 pc
(based on Guyon 2019)

~1/2 of all FGK stars are in 
binary systems
- 41/67 in 10 pc
- 259/519 in 20 pc

Alpha Centauri A & B is a special 
science case:
- 3x closer than any other star system
- 3x better spatial/spectral resolution

Multi-Star Systems increase quantity
Of direct imaging targets
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Multi-Star systems increases quality & diversity of direct imaging targets

Earth at 
aCen B

Due to unusual proximity, breaks common-
wisdom assumptions about what Roman can do:
(1) At gibbous phase, an Earth-like planet around 

Alpha Cen B may be within CGI’s sensitivity 
limits (depending on final performance)

(2) Optical imaging could detect ≳ 3x finer 
structure in exozodi due to spatial resolution 
for aCen

Roman CGI may be able to image Earth twins

Alpha Cen AB enables ≳ 3x better IWA and 
resolution than any other FGK star.

4Belikov 2020 (based on Bailey 2019)



Direct Imaging Challenges with Binary Stars

Alpha Cen B

Alpha Cen A
(blocked by 
starshade/coronagraph)

Dark Hole

Limited by Residual light 
from Alpha Cen B

Challenges due to binary:
- Off-axis leakage from the 

binary companion creates a 
contrast floor

- Depth of the contrast floor is 
a function of the binary 
separation and brightness 
fraction

- A coronagraph for the off-
axis companion is insufficient 
as contrast would be limited 
by its random speckles!



Roman PSD characteristics 
(provided by J. Krist)
- D = 2.4m
- λ = 650nm
- 20 nm RMS with f-2.5 power spectrum
- 48x48 DM

Note: Contrast floor for an on-axis 
coronagraph/starshade due to 
unsuppressed off-axis companion star

Required companion suppression:
- 31/41 have leakage > 1e-10
- 27/41 have leakage > 1e-9

Light Leakage from Binary Companions (10 pc)
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Multi-Star Wavefront Control

Concept developed by Belikov et al 2015, Thomas et al. 2017, Sirbu et al 2018

Alpha Cen B

Alpha Cen A
(blocked by coronagraph)

Dark Hole

Alpha Cen B

Alpha Cen A
(blocked by coronagraph)

Dark Hole

Limited by Residual light 
from Alpha Cen B

Sub-Nyquist Region for B

Idea: Use independent modes on the DM to generate spatially overlapping dark holes for each star



Before Super-Nyquist Wavefront Control

Idea: Control leakage at wide angular separations outside of the DM’s control region



After Super-Nyquist Wavefront Control

For details on SNWC technique see paper on astro-ph: Thomas et al. (2017)

Diffraction Orders



Roman SPC-WFOV Mask Baseline

Rinn = 5.6 λ/D

Rout = 20 λ/D

Roman SPC WFOV Imaging Mode allows 
imaging from 6-20 λ/D:
- coverage of habitable zones of Alpha Cen AB
- designed for mean contrast of 9x10-10 at 10% 

bandwidth at 825 nm (Riggs 2020)
- SPC WFOV experimentally verified down to 

3.5e-9 contrast level at 10% bandwidth 
(Marx et al, 2018)

Diffractive pupil superimposed on SPC WFOV 
Mask design creates diffraction orders to allow 
Super-Nyquist Wavefront Control
(Bendek et al 2018)
MSWC Mode Configuration:
SPAM: MSWC Mask (SPC WFOV + Diffraction 
Grating)
FPAM: Matching SPC WFOV Mask
LSAM: Matching SPC WFOV Lyot Stop
FSAM: Custom 9x9 L/D rectangular field stop
(Bendek et al 2021)

Working
Zone

Designed by Riggs 2020

Belikov 2020
(based on Quarles 2016)



Roman SPC Compact Propagation Model

1st Deformable
Mirror

(48 x 48 Xinetics)
Conj. to pupil

2nd Deformable
Mirror

(48 x 48 Xinetics)

Focal Plane
Mask

(Field Stop)

Lyot Stop
+ Mask

Camera
Roman
Pupil

SPC WFOV Mask
+ Diffractive Pupil

Conj. To pupil

Input 
Light

- Using Fresnel propagation between DMs
- Using optical elements and phase maps publicly available from CGI IPAC

11/21

Fresnel Prop



Diffractive Pupil with SPC WFOV Mode

• Started with SPC WFOV Baseline, and considered two options:
OPTION (1) Add DP dots directly onto the mask
OPTION (2) Add binary DP crosses into optimization

Optimized by A.J. Riggs

• Diffractive Pupil Specifications:
48x48 repeating diffractive pattern across pupil
Diffractive orders matching DM Nyquist limit
3.1% area coverage -> ~1e-4 diffraction order strength
Flight SPC diameter: 17.0 mm
Smallest feature size is 5.6 um

OPTION (1) OPTION (2)

13-dot cross 
feature

ZOOM-IN



Roman Off-axis Leakage

Off-axis star
@ 110 λ/D

Diffraction Orders

Residual speckles from
off-axis star

Nominal Field
Stop

Leakage due to
Conservative PSD

Leakage due to
Optimistic PSD

13/10

825 nm 825 nm ± 5%

Diffraction Order
Elongation in Broadband

Opening Roman CGI Field Stop to see Off-axis star & its leakage

Open Field
Stop



Baseline & Optimized SPC PSFs

OPTION (1) OPTION (2)
Baseline PSF 

Baseline + Dots PSF 

Optimized with Crosses

• Baseline + Dots PSF contrast decreases by 1.5 orders of 
magnitude from ~1e-9 to ~5e-8

• à OPTION (2) recovers the on-axis design performance in 
the presence of the diffraction grating (at a negligible con 
throughput)



Verification with 13-dot MSWC Mask

Monochromatic @ 825 nm 10% Band around 825 nm

Star B
@ 150 L/D

Star A
(Behind FPM)

3rd Diffraction
Order 

9x9 L/D
Field Stop
Opening

9x9 L/D
Field Stop
Opening

Before WFC
No Field Stop

Equal 
brightness
components

DM stroke:
~25 nm RMS

Strehl Ratio:
0.88;



MSWC Sensitivity to Telescope Roll

è Expected spacecraft roll is ~0.1” and MSWC is fairly insensitive to roll angles < 0.1 deg



MSWC Sensitivity to Stellar Diameter & Jitter

è Expected spacecraft jitter is ~2mas per axis (OS-9) dataset which is less than Alf Cen A/B stellar diameter
è SPC WFOV mask is fairly insensitive to expected jitter levels due to large IWA



Off-axis Vignetting at DM2

Star B
@ 100 λ/D

10 λ/D

10 λ/D

• Beamwalk between DMs causes vignetting due to the off-axis footprint 
baffled at DM-2

• Example: for 9” off-axis star, a ~2mrad angle at DM-2 corresponds to a 
lateral footprint translation of 2 mm
• Illuminates un-controlled actuators on the DM-2 edge
• Shifted footprint does not illuminate 2 actuator-rings
• Vignetting off-axis star from DM-2 baffle (4% energy lost)

• MSWC can correct stars at 9” (beam-walk between DMs & circular DM 
stop  is included in compact model)

è Need to check beam-walk for other planes in full-modelDM-1

DM-2

(Conjugated to Pupil)

On-Axis
Footprint

Off-Axis
Footprint

Underillumination

Vignetting

Star B
@ 150 λ/D 

Star A



MSWC Sensitivity to Mask Reflectivity

Prototype manufactured by Hagopian 2021
Final mask to be manufactured by MDL

Cross features

è Amplitude reflectivity less than 1e-3 results in no degradation of performance



Summary of Results
monochromatic light, contrast 4e-8
10% broadband light, 4e-7
6e-8 demonstrated in a smaller dark zone

• Source: single star (demonstrating 
super-Nyquist capability)

• Coronagraph: Lyot Coronagraph
• Decadal Survey Testbed (DST) operated 

by Garreth Ruane (July 2020)

First vacuum demonstrations of super-
Nyquist wavefront control

10% broadband light



Future Work
Demonstrated to date:

Compatibility of CGI imaging with MSWC using compact CGI model
(1) line-of-sight jitter / stellar diameter
(2) telescope roll
(3) vignetting between DMs
(4) mask reflectivity

Participation in RHDA:
Increase fidelity of simulations:
(1) demonstration of MSWC with full Roman CGI model
(2) use latest observing Scenario (OS-11) STOP models
(3) generate realistic observation DRMs for science targets

Determine best options to implement MSWC algorithm on Ground-in-the-Loop WFC system.

Create MSWC simulation tools that includes off-axis stars for Roman CGI 
(1) MSWC mode recently included in FALCO 
(2) MSWC + Ames Coronagraph Efficient Diffraction (ACED) optical propagator libraries on Github:
https://github.com/ARCExoplanetTechnologies



Conclusions
1. MSWC can improve the science yield and science diversity for Roman CGI, including at least a small chance to detect a 

potentially habitable planet.
2. Simulations show that MSWC is compatible with Roman CGI, and allows it to image planets around binaries with 

performance comparable to single stars (assuming post-processing would work similarly well for binary stars as it does for 
single stars).

3. Lab demonstrations with coronagraphs have been started, are now at TRL ~3, and are being advanced to 4. These include 
demonstrations with a real instrument (SCExAO) and in vacuum (DST).
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Why Binaries? Nearby FGK Targets for Roman
Nearest 20 Stars:
13 Multi-Stars
4/7 Multi-Star Hab. 
Zones w/in Roman 
FOV

Legend:
BOLD – Binaries
Color – Hab.Zone

w/in Roman FOV
Green – Companion 
can be ignored
Red – Companion
must be suppressed



Multi-Star Direct Imaging Science with HabEx
Multi-Star Science Statistics:
- 517 FGK stars within 20pc
- 259 multi-stars (optical or dynamical)
- 193 stars limited at > 1e-10

- 40 stars with sep. < N/2 λ/D  

HabEx assumptions:
- D = 4m
- λ = 650nm
- λ/20 RMS with f-3 power spectrum
- 96x96 DM
Note: Contrast floor for an on-axis 
coronagraph/starshade due to
unsuppressed off-axis companion star



MSWC Baseline Scenario (5-band control)

Zoom-in for 13-dot MSWC Mask



DST Vacuum Demonstration (monochromatic)


