Exoplanetary Microlensing science with WFIRST

Part II

Yossi Shvartzvald & Calen Henderson **NPP Fellows @ JPL Sebastiano Calchi Novati**

WFIRST Microlensing Primer Series

- I. Basic Introduction to the Methodology and Theory of Gravitational Microlensing Searches for Exoplanets W, 21/Sept , Yossi Shvartzvald
- II. Lens Companion Detection and Characterization W, 28/Sept , Yossi Shvartzvald
- III. Results from and Future Directions for **Ground**-based Microlensing **Surveys**

W, 12/Oct , Calen Henderson

IV. Results from and Future Directions for **Space**-based Microlensing Surveys (including *WFIRST*)

W, 02/Nov , Calen Henderson

Microlensing basics summary

Microlensing basics

Event timescale

$$
t_E\left(M_L, D_L, D_S, \mu_{rel}\right) = \frac{\theta_E}{\mu_{rel}}
$$

 \approx 20 d for 0.3 M/\odot \approx 1 d for M/J

Microlensing basics

Event timescale

$$
t_E\left(M_L, D_L, D_S, \mu_{rel}\right) = \frac{\theta_E}{\mu_{rel}}
$$

 \approx 20 d for 0.3 M/\odot \approx 1 d for MJ

Companion detection

S. Gaudi

Bond et al. 2004

Planet-Star mass ratio

P L M $q = \frac{M}{M}$ $q =$

Planet-Star separation

Angle with respect to proper motion

S. Gaudi

Planet-Star mass ratio

P L M $q = \frac{M}{M}$

Planet-Star separation

E r a $S = \frac{u_{\perp}}{u_{\perp}}$

Angle with respect to proper motion

S. Gaudi

Planet-Star mass ratio

P L M $q = \frac{M}{M}$

Planet-Star separation

E r a $S = \frac{u_{\perp}}{u_{\perp}}$

 α

Angle with respect to proper motion

S. Gaudi

AA50CH10-Gaudi ARI 16 July 2012 12:29 **Caustics**

WFIRST Microlensing - part II*,* IPAC, 28 Sept. 2016

AA50CH10-Gaudi ARI 16 July 2012 12:29 **Caustics**

AA50CH10-Gaudi ARI 16 July 2012 12:29 **Caustics**

WFIRST Microlensing - part II*,* IPAC, 28 Sept. 2016

θ

a barang ang pag-agamatan na barang ang pag-agamatan na barang ang pag-agamatan na barang ang pag-agamatan na p
Barang ang pag-agamatan na barang ang pag-agamatan na barang ang pag-agamatan na barang ang pag-agamatan na pa

WFIRST Microlensing - part II*,* IPAC, 28 Sept. 2016

–0.1

 $q \sim 0.003$

 $q \sim 0.003$

 $q \sim 0.003$

Gaudi 2012

 $q \sim 0.003$

Gaudi 2012

 $q \sim 0.003$

WFIRST Microlensing - part II*,* IPAC, 28 Sept. 2016

Companion characterization

Planet-Star mass ratio

$$
q = \frac{M_P}{M_L}
$$

Planet-Star separation

$$
S = \frac{a_{\perp}}{r_E}
$$

Event timescale

$$
t_E\left(M_L, D_L, D_S, \mu_{rel}\right) = \frac{\theta_E}{\mu_{rel}}
$$

Planet-Star mass ratio

P

M

 $q = \frac{M}{M}$

L

Planet-Star separation

Bayesian analysis

Assuming a Galactic model

Event timescale

E r

a

 $S = \frac{u_{\perp}}{u_{\perp}}$

$$
t_E\left(M_L, D_L, D_S, \mu_{rel}\right) = \frac{\theta_E}{\mu_{rel}}
$$

Yee et al. 2012

Planet-Star mass ratio

P

M

 $q = \frac{M}{M}$

L

Planet-Star separation

 $\frac{1}{E}\left(M_{L},D_{L},D_{S},\mu _{rel}\right) =\frac{\sigma _{E}}{E}$

 $t_{\rm\scriptscriptstyle E} \left(M_{\rm\scriptscriptstyle L}^{},D_{\rm\scriptscriptstyle L}^{},D_{\rm\scriptscriptstyle S}^{},\mu_{\rm\scriptscriptstyle rel}^{}\right)$ = $\frac{\theta_{\rm\scriptscriptstyle L}}{\mu_{\rm\scriptscriptstyle P}}$

rel

Event timescale

E r

a

 $S = \frac{u_{\perp}}{u_{\perp}}$

Bayesian analysis

Assuming a Galactic model

Planet-Star mass ratio

 $M=$ 0.5, D=4.0, $H_S=$ 18.0 1.1 *M* 3.0 $q = \frac{M}{M}$ *P* 1.0 3.5 0.9 *L* 4.0 0.8 4.5 $0.7\degree$ Flux Planet-Star separation $\begin{array}{c} 5.0 \\ \times 5.5 \end{array}$ 0.65 Finite source 0.5
Nass *a* Parallax *s* $=\frac{u_{\perp}}{u_{\perp}}$ 6.0 *r* 0.4 *E* 6.5 0.3 7.0 Event timescale $\frac{1}{8}$ 0.2 7.5^{L}_{O} $\mathbf{1}$ 3 4 5 6 $t_{\rm\scriptscriptstyle E} \left(M_{\rm\scriptscriptstyle L}^{},D_{\rm\scriptscriptstyle L}^{},D_{\rm\scriptscriptstyle S}^{},\mu_{\rm\scriptscriptstyle rel}^{}\right)$ = $\frac{\theta_{\rm\scriptscriptstyle L}}{\mu_{\rm\scriptscriptstyle P}}$ Lens distance (kpc) $\frac{1}{E}\left(M_{L},D_{L},D_{S},\mu _{rel}\right) =\frac{\sigma _{E}}{E}$ *rel*

Yee 2015

- Finite source size
$$
\rho_* = \frac{\theta_*}{\theta_E}
$$

Bennett & Rhie 1996

Bennett & Rhie 1996

Satellite parallax

WFIRST Microlensing - part II*,* IPAC, 28 Sept. 2016

Satellite parallax

- Finite source size
- Microlens parallax
- Lens flux

- Finite source size
- Microlens parallax
- Lens flux
	- Source flux from model

Yee et al. 2012

- Finite source size
- Microlens parallax
- Lens flux
	- Source flux from model

SMARTS 1.3m

Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
	- Source flux from model
	- Source+lens flux from AO / HST

SMARTS 1.3m

Keck AO

Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
	- Source flux from model
	- Source+lens flux from AO / HST
	- Arithmetic……
	- Search for excess flux

SMARTS 1.3m

Keck AO

Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
	- Source flux from model
	- Source+lens flux from AO / HST
	- Arithmetic……
	-

Keck AO

MOA-2011-293:

Bayesian estimates:

 \Rightarrow M₁=0.43 M_{sun}, D=7.1 kpc

Search for excess flux $\frac{1}{2}$ $\frac{1}{1}$ $\frac{2}{1}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ Yee et al. 2012 \Rightarrow m_p=2.5 M_{Jup}, r_⊥=1.0/3.4 AU

From lens flux:

 \Rightarrow M₁=0.86 M_{sun}, D=7.7 kpc

 \Rightarrow m_p=4.8 M_{Jup}, r_⊥=1.1/3.6 AU

Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
	-
	- AO / HST
	-
	-

Keck AO

Ë First ML planet possibly in the habitable zone

First ML planet possibly in the habitable zone
 $\frac{Bayes}{mg}$ the habitable zone
 $\frac{mayes}{mg}$ in the habitable zone
 $\frac{mayes}{mg}$ in the habitable zone
 $\frac{mayes}{mg}$ in the habitabl • Source flux from model MOA-2011-293: • Source+lens flux from $Bayes$ haves $\frac{1}{2}$ 9.43 M_{sun}, D=7.1 kpc • Arithmetic…… \Rightarrow m_p=2.5 M_{Jup}, r_⊥=1.0/3.4 AU • Search for ϵ \mathbf{M} \mathbf{p} \mathbf{M} \mathbf{P} \mathbf{M} \mathbf{P} \mathbf{M} $\mathbf{$ \Rightarrow M₁=0.86 M_{sun}, D=7.7 kpc \Rightarrow m_p=4.8 M_{Jup}, r_⊥=1.1/3.6 AU Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
	- Source flux from model
	- Source+lens flux from AO / HST
	- Arithmetic……
	- Search for excess flux
	- Source-lens separation

8.2 years after event OGLE-2005-169....

Batista et al. 2014

Microlensing basics

Planet-Star mass ratio

 $M=$ 0.5, D = 4.0, $H_S = 18.0$ 3.0 1.1 *M* $q = \frac{M}{M}$ *P* 1.0 3.5 0.9 *L* 4.0 0.8 4.5 $0.7\degree$ Flux Planet-Star separation $\begin{bmatrix} 5.0 \\ 5.5 \end{bmatrix}$ 5.0 $0.6\overline{\leq}$ Finite source 0.5
Nass *a* Parallax *s* $=\frac{u_{\perp}}{u_{\perp}}$ 6.0 *r* 0.4 *E* 6.5 0.3 7.0 Event timescale $\frac{1}{8}$ 0.2 7.5^{L}_{O} $\mathbf{1}$ 3 $\overline{4}$ 6 5 $t_{\rm\scriptscriptstyle E} \left(M_{\rm\scriptscriptstyle L}^{},D_{\rm\scriptscriptstyle L}^{},D_{\rm\scriptscriptstyle S}^{},\mu_{\rm\scriptscriptstyle rel}^{}\right)$ = $\frac{\theta_{\rm\scriptscriptstyle L}}{\mu_{\rm\scriptscriptstyle P}}$ Lens distance (kpc) $\frac{1}{E}\left(M_{L},D_{L},D_{S},\mu _{rel}\right) =\frac{\sigma _{E}}{E}$ *rel*

Yee 2015

Full Keplerian solution

Keplerian proposal

Lensing system orbital motion

Skowron et al. 2011

Keplerian proposal

Lensing system orbital motion

Ushering in the New Age of
Microlensing from Space

February 1-3, 2017 · Pasadena Sheraton, Pasadena, CA 21st International Microlensing Conference

January 31, 2017 · Caltech, Pasadena, CA 1/2 day Microlensing Workshop

• Breaking results from K2's Campaign 9

- Progress in Spitzer's program of obtaining satellite parallaxes
- Ground-based surveys and advances in theory
- The revolutionary promise of the WFIRST mission for exoplanet science

SCIENTIFIC ORGANIZING COMMITTEE

Rachel Street, Chair (LCOGT)
Rachel Street, Chair (LCOGT)
Rachel Akeson (NExScl)
Jean-Philippe Beautieu (IAS)
David Bennett (GSFC)
Valerio Bozza (University of Salerno)
Geoff Bryden (JPL)
Sean Carew (IPAC) Sean Carey (IPAC) Scott Gaudi (Ohio State) Andrew Gould (Ohio State) Anthew Would Vinlo State)
Matthew Penny (Ohio State)
Takahiro Sumi (University of Osaka)
Mothide Tamura (University of Tokyo)
Andrzej Udalski (Warsaw University)
Jennifer Yee (Harvard-Smithsonian Center for Astrophysics)

http://nexsci.caltech.edu/conferences/2017/microlensing mlens2017@ipac.caltech.edu