Exoplanetary Microlensing science with WFIRST

Part II

Yossi Shvartzvald & Calen Henderson NPP Fellows @ JPL Sebastiano Calchi Novati

WFIRST Microlensing Primer Series

- Basic Introduction to the Methodology and Theory of Gravitational Microlensing Searches for Exoplanets
 W, 21/Sept , Yossi Shvartzvald
- II. Lens Companion Detection and CharacterizationW, 28/Sept , Yossi Shvartzvald
- III. Results from and Future Directions for Ground-based Microlensing Surveys

W, 12/Oct , Calen Henderson

IV. Results from and Future Directions for Space-based Microlensing Surveys (including WFIRST)

W, 02/Nov , Calen Henderson

Microlensing basics summary

Microlensing basics

Event timescale

$$t_E\left(M_L, D_L, D_S, \mu_{rel}\right) = \frac{\theta_E}{\mu_{rel}}$$

≈20 d for 0.3*M*↓
≈1 d for *M*↓

Microlensing basics

Event timescale

$$t_E\left(M_L, D_L, D_S, \mu_{rel}\right) = \frac{\theta_E}{\mu_{rel}}$$

≈20 d for 0.3*M*↓
≈1 d for *M*↓

Companion detection

Bond et al. 2004

Planet-Star mass ratio

 $q = \frac{M_P}{M_L}$

Planet-Star separation

Angle with respect to proper motion

S. Gaudi

Planet-Star mass ratio

 $q = \frac{M_P}{M_L}$

Planet-Star separation

 $s = \frac{a_{\perp}}{r_E}$

Angle with respect to proper motion

S. Gaudi

Planet-Star mass ratio

 $q = \frac{M_P}{M_L}$

Planet-Star separation

 $s = \frac{a_{\perp}}{r_E}$

α

Angle with respect to proper motion

S. Gaudi

WFIRST Microlensing - part II, IPAC, 28 Sept. 2016

WFIRST Microlensing - part II, IPAC, 28 Sept. 2016

 $q \sim 0.003$

 $q \sim 0.003$

 $q \sim 0.003$

Gaudi 2012

 $q \sim 0.003$

Gaudi 2012

WFIRST Microlensing - part II, IPAC, 28 Sept. 2016

Companion characterization

Planet-Star mass ratio

$$q = \frac{M_P}{M_L}$$

Planet-Star separation

$$s = \frac{a_{\perp}}{r_E}$$

Event timescale

$$t_{E}\left(M_{L}, D_{L}, D_{S}, \mu_{rel}\right) = \frac{\theta_{E}}{\mu_{rel}}$$

Planet-Star mass ratio

Planet-Star separation

Bayesian analysis

Assuming a Galactic model

Event timescale

 \mathcal{V}_E

 $q = \frac{M_P}{M_L}$

 $s = \frac{a_{\perp}}{2}$

$$t_{E}\left(M_{L}, D_{L}, D_{S}, \mu_{rel}\right) = \frac{\theta_{E}}{\mu_{rel}}$$

Yee et al. 2012

Planet-Star mass ratio

Bayesian analysis

Assuming a Galactic model

WFIRST Microlensing - part II, IPAC, 28 Sept. 2016

$$q = \frac{M_P}{M_L}$$

Planet-Star separation

$$s = \frac{a_{\perp}}{r_E}$$

Event timescale

$$t_E\left(M_L, D_L, D_S, \mu_{rel}\right) = \frac{\theta_E}{\mu_{rel}}$$

Planet-Star mass ratio

 $M = 0.5, D = 4.0, H_S = 18.0$ 1.13.0 $q = \frac{M_P}{M_L}$ 1.03.5 0.9 4.0 0.8 4.5 0.7 🕤 Flux **Planet-Star separation** ^{H}M 5.5 0.6 Finite source Mass Parallax $S = \frac{a_{\perp}}{r_E}$ 6.0 0.4 6.5 0.3 7.0 **Event timescale** ¹0.2 8 7.5^L 1 3 4 5 6 Lens distance (kpc) $t_E(M_L, D_L, D_S, \mu_{rel}) = \frac{\theta_E}{\mu_{rel}}$

Yee 2015

- Finite source size
$$\rho_* = \frac{\theta_*}{\theta_E}$$

Bennett & Rhie 1996

Bennett & Rhie 1996

Satellite parallax

Satellite parallax

Satellite parallax

Satellite parallax

Satellite parallax

Satellite parallax

- Finite source size
- Microlens parallax
- Lens flux

- Finite source size
- Microlens parallax
- Lens flux
 - Source flux from model

- Finite source size
- Microlens parallax
- Lens flux
 - Source flux from model

SMARTS 1.3m

Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
 - Source flux from model
 - Source+lens flux from AO / HST

SMARTS 1.3m

Keck AO

Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
 - Source flux from model
 - Source+lens flux from AO / HST
 - Arithmetic.....
 - Search for excess flux

SMARTS 1.3m

Keck AO

Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
 - Source flux from model
 - Source+lens flux from AO / HST
 - Arithmetic.....
 - Search for excess flux

Keck AO

MOA-2011-293:

Bayesian estimates:

 \Rightarrow M_L=0.43 M_{sun}, D=7.1 kpc

 \Rightarrow m_p=2.5 M_{Jup}, r₁=1.0/3.4 AU Yee et al. 2012

From lens flux:

 \Rightarrow M_L=0.86 M_{sun}, D=7.7 kpc

 \Rightarrow m_p=4.8 M_{Jup}, r₁=1.1/3.6 AU

Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
 - Source flux from model
 - Source+lens flux from AO / HST

 - Search for

Keck AO

E -us avent the habitable zone First ML planet possibly in the habitable zone Arithmetic..... Yee et al. 2012 \Rightarrow M_I =0.86 M_{sun}, D=7.7 kpc \Rightarrow m_p=4.8 M_{Jup}, r₁=1.1/3.6 AU Batista et al. 2014

- Finite source size
- Microlens parallax
- Lens flux
 - Source flux from model
 - Source+lens flux from AO / HST
 - Arithmetic.....
 - Search for excess flux
 - Source-lens separation

8.2 years after event OGLE-2005-169....

Batista et al. 2014

Microlensing basics

Planet-Star mass ratio

 $q = \frac{M_P}{M_L}$ **Planet-Star separation** $S = \frac{a_{\perp}}{r_E}$ Event timescale $t_E\left(M_L, D_L, D_S, \mu_{rel}\right) = \frac{\theta_E}{\mu_{rel}}$

Yee 2015

Full Keplerian solution

Keplerian proposal

Lensing system orbital motion

Skowron et al. 2011

Keplerian proposal

Lensing system orbital motion

Ushering in the New Age of Microlensing from Space

February 1-3, 2017 · Pasadena Sheraton, Pasadena, CA 21st International Microlensing Conference

January 31, 2017 · Caltech, Pasadena, CA 1/2 day Microlensing Workshop

• Breaking results from K2's Campaign 9

- Progress in Spitzer's program of obtaining satellite parallaxes
- Ground-based surveys and advances in theory
- The revolutionary promise of the *WFIRST* mission for exoplanet science

SCIENTIFIC ORGANIZING COMMITTEE

Rachel Street, Chair (LCOGT) Rachel Akeson (NExSc) Tom Barclay (NASA Ames) Jean-Philippe Beaulieu (IAS) David Bennett (GSFC) Valerio Bozza (University of Salerno) Geoff Bryden (JPL) Sean Carey (IPAC) Scott Gaudi (Ohio State) Andrew Gould (Ohio State) Mathew Penny (Ohio State) Takahiro Sumi (University of Osaka) Motohide Tamura (University of Tokyo) Andree Yee (Harvard-Smithsonian Center for Astrophysics)

http://nexsci.caltech.edu/conferences/2017/microlensing mlens2017@ipac.caltech.edu