Exoplanetary Microlensing science with WFIRST

Yossi Shvartzvald & Calen Henderson NPP Fellows @ JPL Sebastiano Calchi Novati

WFIRST Microlensing Primer Series

- Basic Introduction to the Methodology and Theory of Gravitational Microlensing Searches for Exoplanets
 W, 21/Sept , Yossi Shvartzvald
- II. Lens Companion Detection and CharacterizationW, 28/Sept , Yossi Shvartzvald
- III. Results from and Future Directions for Ground-based Microlensing Surveys

W, 12/Oct , Calen Henderson

IV. Results from and Future Directions for Space-based Microlensing Surveys (including WFIRST)

W, 19/Oct , Calen Henderson

Event timescale $t \downarrow E (M \downarrow L, D \downarrow L, D \downarrow S, \mu \downarrow rel) =$ $\approx 20 \text{ d for } 0.3 M \downarrow \odot$ $\approx 1 \text{ d for } M \downarrow J$

Free floating planets

WFIRST Microlensing - part I, IPAC, 21 Sept. 2016

Free floating planets

Sumi et al. 2011:

Unbound or distant Jupiters are twice $(1.8^{+1.7}_{-0.8})$ as common as main sequence stars

WFIRST Microlensing - part I, IPAC, 21 Sept. 2016

S. Gaudi

Planet-Star mass ratio

 $q = \frac{M_P}{M_L}$

Planet-Star separation

$$s = \frac{a_{\perp}}{r_E}$$

Event timescale

$$t_{E}\left(M_{L}, D_{L}, D_{S}, \mu_{rel}\right) = \frac{\theta_{E}}{\mu_{rel}}$$

S. Gaudi

High order effects:

- Finite source size $\rho_* = \frac{\theta_*}{\theta_E}$

WFIRST Microlensing - part I, IPAC, 21 Sept. 2016

High order effects:

- Finite source size $\rho_* = \frac{\theta_*}{\theta_{E}}$
- Microlens parallax

High order effects:

Orbital parallax

- Finite source size - Microlens parallax $\pi_E = \frac{AU}{p_E^{\prime 0}}$ 15

High order effects:

- Finite source size
- Microlens parallax

OGLE-14-0124

Astrometric microlensing

S. Gaudi