
Exoplanet Open-Source Imaging Mission
Simulator (EXOSIMS)

Interface Control Document

Christian Delacroix, Daniel Garrett, and Dmitry Savransky
Sibley School of Mechanical and Aerospace Engineering

Cornell University
Ithaca, NY 14853

ABSTRACT
This document describes the extensible, modular, open source software framework EXOSIMS. EXOSIMS cre-

ates end-to-end simulations of space-based exoplanet imaging missions using stand-alone software modules. The
input/output interfaces of each module and interactions of modules with each other are presented to give guidance
on mission specific modifications to the EXOSIMS framework. Last Update: September 11, 2017

CONTENTS

1 Introduction 3
1.1 Purpose and Scope . 3

2 Overview 3

3 Global Specifications 4
3.1 Python Packages . 4
3.2 Coding Conventions . 5

3.2.1 Module Type . 6
3.2.2 Callable Attributes . 6

4 Backbone 7
4.1 Specification Format . 7
4.2 Modules Specification . 10
4.3 Universal Parameters . 11

5 Module Specifications 12
5.1 Star Catalog . 13

5.1.1 Star Catalog Object Attribute Initialization . 13
5.2 Planet Population . 14

5.2.1 Planet Population Object Attribute Initialization . 14
5.2.2 Planet Population Value Generators . 16

5.3 Planet Physical Model . 16
5.4 Optical System . 17

5.4.1 Optical System Object Attribute Initialization . 17
5.4.2 Cp Cb Csp Method . 21
5.4.3 calc intTime Method . 22
5.4.4 calc minintTime Method . 22
5.4.5 calc dMag per intTime Method . 23
5.4.6 ddMag dt Method . 23

1

5.5 Zodiacal Light . 23
5.5.1 Zodiacal Light Object Attribute Initialization . 24
5.5.2 fZ Method . 24
5.5.3 fEZ Method . 25

5.6 Background Sources . 25
5.6.1 dNbackground Method . 25

5.7 Post-Processing . 25
5.7.1 Post-Processing Object Attribute Initialization . 26
5.7.2 det occur Method . 26

5.8 Completeness . 27
5.8.1 Completeness Object Attribute Initialization . 27
5.8.2 target completeness Method . 27
5.8.3 gen update Method . 28
5.8.4 completeness update Method . 28
5.8.5 comp per intTime Method . 28
5.8.6 dcomp dt Method . 28

5.9 Target List . 29
5.9.1 Target List Object Attribute Initialization . 29
5.9.2 populate target list Method . 30
5.9.3 filter target list Method . 30
5.9.4 Target List Filtering Helper Methods . 30
5.9.5 starprop Method . 30
5.9.6 starMag Method . 31
5.9.7 stellarTeff Method . 31

5.10 Simulated Universe . 31
5.10.1 Attributes . 32
5.10.2 gen physical properties Method . 33
5.10.3 init systems Method . 34
5.10.4 propag system Method . 34
5.10.5 dump systems Method . 35
5.10.6 dump system params Method . 35
5.10.7 revise planets list Method . 35
5.10.8 revise stars list Method . 35

5.11 Observatory . 36
5.11.1 Observatory Object Attribute Initialization . 37
5.11.2 orbit Method . 38
5.11.3 solarSystem body position Method . 38
5.11.4 keepout Method . 38
5.11.5 distForces Method . 39

5.12 Time Keeping . 39
5.12.1 Time Keeping Object Attribute Initialization . 39
5.12.2 allocate time Method . 41
5.12.3 next observing block Method . 41
5.12.4 mission is over Method . 41

5.13 Survey Simulation . 41
5.13.1 Survey Simulation Object Attribute Initialization . 42
5.13.2 run sim Method . 44
5.13.3 next target Method . 45
5.13.4 observation detection Method . 46
5.13.5 observation characterization Method . 46
5.13.6 calc signal noise Method . 46
5.13.7 update occulter mass Method . 47

5.14 Survey Ensemble . 47

2

Nomenclature
EXOSIMS Exoplanet Open-Source Imaging Mission Simulator
ICD Interface Control Document
MJD Modified Julian Day

1 Introduction
Building confidence in a mission concept’s ability to achieve its science goals is always desirable. Unfortunately,

accurately modeling the science yield of an exoplanet imager can be almost as complicated as designing the mission. It is
challenging to compare science simulation results and systematically test the effects of changing one aspect of the instrument
or mission design.

EXOSIMS (Exoplanet Open-Source Imaging Mission Simulator) addresses this problem by generating ensembles of
mission simulations for exoplanet direct imaging missions to estimate science yields. It is designed to allow systematic
exploration of exoplanet imaging mission science yields. It consists of stand-alone modules written in Python which may be
modified without requiring modifications to other portions of the code. This allows EXOSIMS to be easily used to investigate
new designs for instruments, observatories, or overall mission designs independently. This document describes the required
input/output interfaces for the stand-alone modules to enable this flexibility.

1.1 Purpose and Scope
This Interface Control Document (ICD) provides an overview of the software framework of EXOSIMS and some details

on its component parts. As the software is intended to be highly reconfigurable, operational aspects of the code are empha-
sized over implementational details. Specific examples are taken from the coronagraphic instrument under development for
WFIRST. The data inputs and outputs of each module are described. Following these guidelines will allow the code to be
updated to accommodate new mission designs.

This ICD defines the input/output of each module and the interfaces between modules of the code. This document is
intended to guide mission planners and instrument designers in the development of specific modules for new mission designs.

2 Overview
The terminology used to describe the software implementation is loosely based upon object-oriented programing (OOP)

terminology, as implemented by the Python language, in which EXOSIMS is built. The term module can refer to the
object class prototype representing the abstracted functionality of one piece of the software, an implementation of this object
class which inherits the attributes and methods of the prototype, or an instance of this class. Input/output definitions of
modules refer to the class prototype. Implemented modules refer to the inherited class definition. Passing modules (or their
outputs) means the instantiation of the inherited object class being used in a given simulation. Relying on strict inheritance
for all implemented module classes provides an automated error and consistency-checking mechanism. The outputs of a
given object instance may be compared to the outputs of the prototype. It is trivial to pre-check whether a given module
implementation will work within the larger framework, and this approach allows for flexibility and adaptability.

The overall framework of EXOSIMS is depicted in Figure 1 which shows all of the component software modules in
the order in which they are instantiated in normal operation. The modules include the Optical System, Star Catalog, Planet
Population, Observatory, Planet Physical Model, Time Keeping, Zodiacal Light, Background Sources, and Post-Processing
modules and Target List, Simulated Universe, Survey Simulation, and Survey Ensemble modules. Objects of all module
classes can be instantiated independently, although most modules require the instantiation of other modules during their
construction. Different implementations of the modules contain specific mission design parameters and physical descriptions
of the universe, and will change according to mission and planet population of interest. The upstream modules (including
Target List, Simulated Universe, Survey Simulation, and Survey Ensemble modules) take information contained in the
downstream modules and perform mission simulation tasks. The instantiation of an object of any of these modules requires
the instantiation of one or more downstream module objects. Any module may perform any number or kind of calculations
using any or all of the input parameters provided. The specific implementations are only constrained by their input and
output specification contained in this document.

Figures 2 and 3 show schematic representations of the three different aspects of a module, using the Star Catalog and
Observatory modules as examples, respectively. Every module has a specific prototype that sets the input/output structure
of the module and encodes any common functionality for all module class implementations. The various implementations
inherit the prototype and add/overload any attributes and methods required for their particular tasks, limited only by the
preset input/output scheme. Finally, in the course of running a simulation, an object is generated for each module class
selected for that simulation. The generated objects can be used in exactly the same way in the downstream code, regardless
of what implementation they are instances of, due to the strict interface defined in the class prototypes.

3

Fig. 1. Schematic depiction of the instantiation path of all EXOSIMS modules. The entry point to the backbone is the construction of a
MissionSim object, which causes the instantiation of all other module objects. All objects are instantiated in the order shown here, with
SurveySimulation and SurveyEnsemble constructed last. The arrows indicate calls to the object constructor, and object references to each
module are always passed up directly to the top calling module, so that at the end of construction, the MissionSim object has direct access to
all other modules as its attributes.

For lower level (downstream) modules, the input specification is much more loosely defined than the output specifi-
cation, as different implementations may draw data from a wide variety of sources. For example, the star catalog may be
implemented as reading values from a static file on disk, or may represent an active connection to a local or remote database.
The output specification for these modules, however, as well as both the input and output for the upstream modules, is
entirely fixed so as to allow for generic use of all module objects in the simulation.

3 Global Specifications
Common references (units, frames of reference, etc.) are required to ensure interoperability between the modules of

EXOSIM. All of the references listed below must be followed.

Common Epoch
J2000

Common Reference Frame
Heliocentric Equatorial (HE)

3.1 Python Packages
EXOSIMS is an open source platform. As such, packages and modules may be imported and used for calculations

within any of the stand-alone modules. The following commonly used Python packages are used for the WFIRST-specific
implementation of EXOSIMS:

astropy

astropy.constants
astropy.coordinates
astropy.time
astropy.units

copy

4

Example'Flowdown'
EXOSIMS.Prototypes.StarCatalog'

'
Allocates'null'arrays'for'all'stellar'parameters'of'

interest'

EXOSIMS.StarCatalog.SIMBAD'
'

General'star'catalog'implementaCon'
designed'to'accept'downloaded'data'

from'Simbad'

EXOSIMS.StarCatalog.Rvcat'
'

StaCc'RV'targets'of'interest'catalog'
'

inherits' inherits'

import'EXOSIMS.StarCatalog.?'as'StarCatalog'
catalog'='StarCatalog(*args)'

(all#subsequent#opera.ons#on#catalog)'

instanCates''

Fig. 2. Schematic of a sample implementation for the three module layers for the Star Catalog module. The Star Catalog prototype (top row)
is immutable, specifies the input/output structure of the module along with all common functionality, and is inherited by all Star Catalog class
implementations (middle row). In this case, two different catalog classes are shown: one that reads in data from a SIMBAD catalog dump,
and one which contains only information about a subset of known radial velocity targets. The object used in the simulation (bottom row) is an
instance of one of these classes, and can be used in exactly the same way in the rest of the code due to the common input/output scheme.

hashlib
importlib
numpy

numpy.linalg

os

os.path

pickle/cPickle
scipy

scipy.io
scipy.special
scipy.interpolate

h5py (optional)
jplephem (optional)

Additionally, while not required for running the survey simulation, matplotlib is used for visualization of the results.

3.2 Coding Conventions
In order to allow for flexibility in using alternate or user-generated module implementations, the only requirement on

any module is that it inherits (either directly or by inheriting another module implementation that inherits the prototype) the
appropriate prototype. It is similarly expected (although not required) that the prototype constructor will be called from the
constructor of the newly implemented class. An example of an Optical System module implementation follows:

from EXOSIMS.Prototypes.OpticalSystem import OpticalSystem

class ExampleOpticalSystem(OpticalSystem):

def __init__(self, **specs):

OpticalSystem.__init__(self, **specs)

5

A'More'Complicated'Example'
EXOSIMS.Prototypes.Observatory'
Defines'default'values,'provides'common'

funcConality'for'calculaCng'fuel'use,'look'vectors'
to'solar'system'objects,'etc.'

EXOSIMS.Observatory.WFIRST'
'

The'detailed'WFIRST'observatory'
specificaCon'with'28.5o'GEO'orbit'

EXOSIMS.Observatory.WFIRSTL2'
'

Full'inheritance'of'Observatory.WFIRST'
with'only'orbit'funcCon'overloaded'

'

inherits'

inherits'

import'EXOSIMS.Observatory.?'as'Observatory'
observatory'='Observatory(*args)'

availableTargets'='observatory.availableTargets(catalog,currentTime)'
(all#subsequent#opera.ons#on#observatory)'

instanCates''

Fig. 3. Schematic of a sample implementation for the three module layers for the Observatory module. The Observatory prototype (top row)
is immutable, specifies the input/output structure of the module along with all common functionality, and is inherited by all Observatory class
implementations (middle row). In this case, two different observatory classes are shown that differ only in the definition of the observatory
orbit. Therefore, the second implementation inherits the first (rather than directly inheriting the prototype) and overloads only the orbit method.
The object used in the simulation (bottom row) is an instance of one of these classes, and can be used in exactly the same way in the rest of
the code due to the common input/output scheme.

...

Note that the filename must match the class name for all modules.

3.2.1 Module Type
It is always possible to check whether a module is an instance of a given prototype, for example:

isinstance(obj,EXOSIMS.Prototypes.Observatory.Observatory)

However, it can be tedious to look up all of a given object’s base classes so, for convenience, every prototype will provide
a private variable _modtype, which will always return the name of the prototype and should not be overwritten by any
module code. Thus, if the above example evaluates as True, obj._modtype will return Observatory.

3.2.2 Callable Attributes
Certain module attributes must be represented in a way that allows them to be parametrized by other values. For

example, the instrument throughput and contrast are functions of both the wavelength and the angular separation, and so
must be encodable as such in the optical system module. To accommodate this, as well as simpler descriptions where these
parameters may be treated as static values, these and other attributes are defined as ‘callable’. This means that they must be
set as objects that can be called in the normal Python fashion, i.e., object(arg1,arg2,...).

These objects can be function definitions defined in the code, or imported from other modules. They can be lambda
expressions defined inline in the code. Or they can be callable object instances, such as the various scipy interpolants. In
cases where the description is just a single value, these attributes can be defined as dummy functions that always return the
same value, for example:

def throughput(wavelength,angle):
return 0.5

or even more simply:

throughput = lambda wavelength,angle: 0.5

6

https://docs.python.org/2/reference/expressions.html#lambda
https://docs.python.org/2/reference/expressions.html#lambda
http://docs.scipy.org/doc/scipy/reference/interpolate.html

4 Backbone
By default, the simulation execution will be performed via the backbone. This will consist of a limited set of functions

that will primarily be tasked with parsing the input specification described below, and then creating the specified instances of
each of the framework modules, detailed in §5. The backbone functionality will primarily be implemented in the MissionSim
class, whose constructor will take the input script file (§4.1) and generate instances of all module objects, including the
SurveySimulation (§5.13) and SurveyEnsemble modules, which will contain the functions to run the survey simulations.
Any mission-specific execution variations will be introduced by method overloading in the inherited survey simulation
implementation. Figure 1 provides a graphical description of the instantiation order of all module objects.

A simulation specification is a single JSON-formatted (http://json.org/) file that encodes user-settable parame-
ters and module names. The backbone will contain a reference specification with all parameters and modules set via defaults
in the constructors of each of the modules. In the initial parsing of the user-supplied specification, it will be merged with
the reference specification such that any fields not set by the user will be assigned to their reference (default) values. Each
instantiated module object will contain a dictionary called _outspec, which, taken together, will form the full specification
for the current run (as defined by the loaded modules). This specification will be written out to a json file associated with
the output of every run. Any specification added by a user implementation of any module must also be added to the outspec
dictionary. The assembly of the full output specification is provided by MissionSim method genOutSpec.

The backbone will also contain a specification parser that will check specification files for internal consistency. For
example, if modules carry mutual dependencies, the specification parser will return an error if these are not met for a given
specification. Similarly, if modules are selected with optional top level inputs, warnings will be generated if these are not set
in the same specification files.

In addition to the specification parser, the backbone will contain a method for comparing two specification files and
returning the difference between them. Assuming that the files specify all user-settable values, this will be equivalent to
simply performing a diff operation on any POSIX system. The backbone diff function will add in the capability to
automatically fill in unset values with their defaults. For every simulation (or ensemble), an output specification will be
written to disk along with the simulation results with all defaults used filled in.

4.1 Specification Format
The JSON specification file will contain a series of objects with members enumerating various user-settable parameters,

top-level members for universal settings (such as the mission lifetime) and arrays of objects for multiple related specifications,
such as starlight suppression systems and science instruments. The specification file must contain a modules dictionary
listing the module names (or paths on disk to user-implemented classes) for all modules.

{
"FAP": 3e-07,
"FAdMag0": 15,
"IWA": 0.15,
"Irange": [

0.0,
180.0

],
"MDP": 0.001,
"Mprange": [

1.0,
4131.0

],
"OBduration": 0,
"OWA": 0.557002,
"Orange": [

0.0,
360.0

],
"Rprange": [

1.0,
22.6

],
"WA0": 0.289498,
"WAint": 0.3,
"arange": [

7

http://json.org/

0.1,
100.0

],
"charMargin": 0.15,
"checkKeepoutEnd": true,
"coMass": 5800.0,
"constrainOrbits": false,
"currentTimeAbs": 60634.0,
"currentTimeNorm": 0.0,
"dMag0": 22.5,
"dMagLim": 22.5,
"dMagint": 22.5,
"erange": [

0.01,
0.99

],
"esigma": 0.25,
"extendedLife": 0.0,
"forceStaticEphem": false,
"havejplephem": true,
"intCutoff": 15.0,
"keepStarCatalog": false,
"koAngleMax": 90.0,
"koAngleMin": 45.0,
"koAngleMinEarth": 45.0,
"koAngleMinMoon": 45.0,
"koAngleSmall": 1.0,
"magEZ": 22.0,
"magZ": 23.0,
"minComp": 0.0,
"missionLife": 5.0,
"missionPortion": 0.0493150685,
"missionStart": 60634.0,
"modules": {

"BackgroundSources": "BackgroundSources",
"Completeness": "GarrettCompleteness",
"Observatory": "WFIRSTObservatoryL2",
"OpticalSystem": "Nemati",
"PlanetPhysicalModel": "Forecaster",
"PlanetPopulation": "KeplerLike2",
"PostProcessing": "PostProcessing",
"SimulatedUniverse": "KeplerLikeUniverse",
"StarCatalog": "EXOCAT1",
"SurveyEnsemble": "SurveyEnsemble",
"SurveySimulation": "SurveySimulation",
"TargetList": "TargetList",
"TimeKeeping": "TimeKeeping",
"ZodiacalLight": "Stark"

},
"nVisitsMax": 5,
"ntFlux": 1,
"obscurFac": 0.1724,
"observingModes": [

{
"SNR": 5,
"detectionMode": true,
"instName": "imager",
"radDos": 0.5,

8

"systName": "HLC-565"
},
{

"SNR": 10,
"instName": "spectro",
"lam": 660,
"radDos": 1.0,
"systName": "SPC-660"

}
],
"occulterSep": 55000.0,
"ppFact": 0.1,
"prange": [

0.083,
0.882

],
"pupilDiam": 2.37,
"ref_Time": 0.2,
"ref_dMag": 3.0,
"scaleOrbits": false,
"scienceInstruments": [

{
"CIC": 0.01,
"ENF": 1.0,
"FoV": 9.5,
"PCeff": 0.8,
"QE": "$HOME/Data/QEfile.fits",
"Rs": 1.0,
"fnumber": 60.97706197560175,
"focal": 144.51563688217615,
"idark": 0.000114,
"lenslSamp": 1.0,
"name": "imager",
"optics": 0.518018590965876,
"pixelNumber": 1024,
"pixelScale": 0.0185546875,
"pixelSize": 1.3e-05,
"sread": 0.0,
"texp": 100.0

},
{

"CIC": 0.01,
"ENF": 1.0,
"FoV": 1.0,
"PCeff": 0.8,
"QE": "$HOME/Data/QEfile.fits",
"Rs": 50.0,
"fnumber": 575.4526999602537,
"focal": 1363.8228989058011,
"idark": 0.000114,
"lenslSamp": 2.0,
"name": "spectro",
"optics": 0.465846901959329,
"pixelNumber": 76,
"pixelScale": 0.02631578947368421,
"pixelSize": 0.000174,
"sread": 0.0,
"texp": 100.0

9

}
],
"settlingTime": 0.5,
"shapeFac": 0.7853981633974483,
"smaknee": 30.0,
"starlightSuppressionSystems": [

{
"BW": 0.1,
"IWA": 0.15,
"OWA": 0.428996,
"core_area": "$HOME/Data/area.fits",
"core_contrast": 1e-10,
"core_mean_intensity": "$HOME/Data/mean_intensity.fits",
"core_platescale": 0.3,
"core_thruput": "$HOME/Data/thruput.fits",
"deltaLam": 56.5,
"lam": 565.0,
"name": "HLC-565",
"occ_trans": "$HOME/Data/occ_trans.fits",
"occulter": false,
"ohTime": 0.5,
"optics": 0.983647,
"samp": 10.0

},
{

"BW": 0.18,
"IWA": 0.208876,
"OWA": 0.557002,
"core_area": "$HOME/Data/area.fits",
"core_contrast": 1e-10,
"core_mean_intensity": "$HOME/Data/mean_intensity.fits",
"core_platescale": 0.3,
"core_thruput": "$HOME/Data/thruput.fits",
"deltaLam": 118.8,
"lam": 660.0,
"name": "SPC-660",
"occ_trans": "$HOME/Data/occ_trans.fits",
"occulter": false,
"ohTime": 0.5,
"optics": 0.9154706,
"samp": 10.0

}
],
"staticStars": true,
"waitMultiple": 2.0,
"waitTime": 1.0,
"wrange": [

0.0,
360.0

]
}

4.2 Modules Specification
The final array in the input specification (modules) is a list of all the modules that define a particular simulation. This

is the only part of the specification that will not be filled in by default if a value is missing - each module must be explicitly
specified. The order of the modules in the list is arbitrary, so long as they are all present.

If the module implementations are in the appropriate subfolder in the EXOSIMS tree, then they can be specified by the

10

module name. However, if you wish to use an implemented module outside of the EXOSIMS directory, then you need to
specify it via its full path in the input specification.

All modules, regardless of where they are stored on disk must inherit the appropriate prototype.

4.3 Universal Parameters
These parameters apply to all simulations, and are described in detail in their specific module definitions:

MissionSim
verbose (boolean) Boolean used to create the vprint function, equivalent to the python print function with

an extra verbose toggle parameter (True by default). The vprint function can be accessed by all
modules from EXOSIMS.util.vprint.

seed (integer) Number used to seed the NumPy generator. Generated randomly by default.
logfile (string) Path to the log file. If None, logging is turned off. If supplied but empty string (”), a

temporary file is generated.
loglevel (string) The level of log, defaults to ’INFO’. Valid levels are: CRITICAL, ERROR, WARNING,

INFO, DEBUG (case sensitive).
PlanetPopulation

arange (float) 1×2 list of semi-major axis range in units of AU .
erange (float) 1×2 list of eccentricity range.
Irange (float) 1×2 list of inclination range in units of deg.
Orange (float) 1×2 list of ascension of the ascending node range in units of deg.
wrange (float) 1×2 list of argument of perigee range in units of deg.
prange (float) 1×2 list of planetary geometric albedo range.
Rprange (float) 1×2 list of planetary radius range in Earth radii.
Mprange (float) 1×2 list of planetary mass range in Earth masses.

scaleOrbits (boolean) True means planetary orbits are scaled by the square root of stellar luminosity.
constrainOrbits (boolean) True means planetary orbits are constrained to never leave the semi-major axis range

(arange).
eta (float) The average occurrence rate of planets per star for the entire population.

OpticalSystem
obscurFac (float) Obscuration factor due to secondary mirror and spiders.
shapeFac (float) Telescope aperture shape factor.

pupilDiam (float) Entrance pupil diameter in units of m.
IWA (float) Fundamental Inner Working Angle in units of arcsec. No planets can ever be observed at

smaller separations.
OWA (float) Fundamental Outer Working Angle in units of arcsec. Set to In f for no OWA. JSON

values of 0 will be interpreted as In f .
intCutoff (float) Maximum allowed integration time in units of day.

dMag0 (float) Favorable planet delta magnitude value used to calculate the minimum integration times
for inclusion in target list.

WA0 (float) Instrument working angle value used to calculate the minimum integration times for inclu-
sion in target list, in units of arcsec.

scienceInstruments (list of dicts) Contains specific attributes of all science instruments.
starlight-

SuppressionSystems (list of dicts) Contains specific attributes of all starlight suppression systems.
observingModes (list of dicts) Contains specific attributes of all observing modes.
ZodiacalLight

magZ (float) 1 zodi brightness magnitude (per arcsec2).
magEZ (float) 1 exo-zodi brightness magnitude (per arcsec2).
varEZ (float) exo-zodiacal light variation (variance of log-normal distribution).

PostProcessing
FAP (float) False Alarm Probability.
MDP (float) Missed Detection Probability.

ppFact (float, callable) Post-processing contrast factor, between 0 and 1.
FAdMag0 (float, callable) Minimum delta magnitude that can be obtained by a false alarm.

Completeness
dMagLim (float) Limiting planet-to-star delta magnitude for completeness.
minComp (float) Minimum completeness value for inclusion in target list.

11

TargetList
staticStars (boolean) Boolean used to force static target positions set at mission start time.

keepStarCatalog (boolean) Boolean representing whether to delete the star catalog after assembling the target list.
If true, object reference will be available from TargetList object.

fillPhotometry (boolean) If true, attempts to fill in photometric values for targets based on their spectral types.
Observatory
koAngleMin (float) Telescope minimum keepout angle in units of deg.

koAngleMinMoon (float) Telescope minimum keepout angle in units of deg, for the Moon only.
koAngleMinEarth (float) Telescope minimum keepout angle in units of deg, for the Earth only.

koAngleMax (float) Telescope maximum keepout angle (for occulter) in units of deg.
koAngleSmall (float) Telescope keepout angle for smaller (angular size) bodies in units of deg.

checkKeepoutEnd (boolean) Boolean signifying if the keepout method must be called at the end of each observation.
settlingTime (float) Amount of time needed for observatory to settle after a repointing in units of day.

thrust (float) Occulter slew thrust in units of mN.
slewIsp (float) Occulter slew specific impulse in units of s.
scMass (float) Occulter (maneuvering spacecraft) initial wet mass in units of kg.
dryMass (float) Occulter (maneuvering spacecraft) dry mass in units of kg.
coMass (float) Telescope (or non-maneuvering spacecraft) mass in units of kg.

occulterSep (float) Occulter-telescope distance in units of km.
skIsp (float) Specific impulse for station keeping in units of s.

defburnPortion (float) Default burn portion for slewing.
checkKeepoutEnd (boolean) Boolean signifying if the keepout method must be called at the end of each observation.

forceStaticEphem (boolean) Force use of static solar system ephemeris if set to True, even if jplephem module is
present.

spkpath (string) Full path to SPK kernel file.
TimeKeeping
missionLife (float) The total mission lifetime in units of year. When the mission time is equal or greater to

this value, the mission simulation stops.
missionPortion (float) The portion of the mission dedicated to exoplanet science, given as a value between 0 and

1. The mission simulation stops when the total integration time plus observation overhead time is
equal to the missionLife × missionPortion.

extendedLife (float) Extended mission time in units of year. Extended life typically differs from the primary
mission in some way—most typically only revisits are allowed

missionStart (float) Mission start time in MJD.
OBduration (float) Default allocated duration of observing blocks, in units of day. If no OBduration was

specified, a new observing block is created for each new observation in the SurveySimulation
module.

waitTime (float) Default allocated duration to wait in units of day, when the Survey Simulation does not
find any observable target.

waitMultiple (float) Multiplier applied to the wait time in case of repeated empty lists of observable targets,
which makes the wait time grow exponentially.

SurveySimulation
nt flux (integer) Observation time sampling, to determine the integration time interval.

nVisitsMax (integer) Maximum number of observations (in detection mode) per star.
charMargin (float) Integration time margin for characterization.

seed (integer) Random seed used to make all random number generation reproducible.
WAint (float) Working angle used for integration time calculation in units of arcsec.

dMagint (float) Delta magnitude used for integration time calculation.

5 Module Specifications
The lower level modules include Planet Population, Star Catalog, Optical System, Zodiacal Light, Background Sources,

Planet Physical Model, Observatory, Time Keeping, and Post-Processing. These modules encode and/or generate all of the
information necessary to perform mission simulations. The specific mission design determines the functionality of each
module, while inputs and outputs of these modules remain the same (in terms of data type and variable representations).

The upstream modules include Completeness, Target List, Simulated Universe, Survey Simulation and Survey Ensem-
ble. These modules perform methods which require inputs from one or more downstream modules as well as calling function
implementations in other upstream modules.

12

This section defines the functionality, major tasks, input, output, and interface of each of these modules. Every module
constructor must always accept a keyword dictionary (**spec) representing the contents of the specification JSON file
organized into a Python dictionary. The descriptions below list out specific keywords that are pulled out by the prototype
constructors of each of the modules, but implemented constructors may include additional keywords (so long as they correctly
call the prototype constructor). In all cases, if a given key:value pair is missing from the dictionary, the appropriate object
attributes will be assigned the default values listed.

5.1 Star Catalog
The Star Catalog module includes detailed information about potential target stars drawn from general databases such

as SIMBAD, mission catalogs such as Hipparcos, or from existing curated lists specifically designed for exoplanet imaging
missions. Information to be stored, or accessed by this module will include target positions and proper motions at the
reference epoch, catalog identifiers (for later cross-referencing), bolometric luminosities, stellar masses, and magnitudes in
standard observing bands. Where direct measurements of any value are not available, values are synthesized from ancillary
data and empirical relationships, such as color relationships and mass-luminosity relations.

This module does not provide any functionality for picking the specific targets to be observed in any one simulation, nor
even for culling targets from the input lists where no observations of a planet could take place. This is done in the Target List
module as it requires interactions with the Planet Population (to determine the population of interest), Optical System (to
define the capabilities of the instrument), and Observatory (to determine if the view of the target is unobstructed) modules.

5.1.1 Star Catalog Object Attribute Initialization
The Star Catalog prototype creates empty 1D NumPy ndarrays for each of the output quantities listed below. Specific

Star Catalog modules must populate the values as appropriate. Note that values that are left unpopulated by the implementa-
tion will still get all zero array, which may lead to unexpected behavior.

Input
star catalog information

Information from an external star catalog (left deliberately vague as these can be anything).

Attributes
ntargs (integer)

Number of stars
Name (string ndarray)

Star names
Spec (string ndarray)

Spectral types
Umag (float ndarray)

U magnitude
Bmag (float ndarray)

B magnitude
Vmag (float ndarray)

V magnitude
Rmag (float ndarray)

R magnitude
Imag (float ndarray)

I magnitude
Jmag (float ndarray)

J magnitude
Hmag (float ndarray)

H magnitude
Kmag (float ndarray)

K magnitude
BV (float ndarray)

B-V Johnson magnitude
MV (float ndarray)

Absolute V magnitude

13

BC (float ndarray)
Bolometric correction

L (float ndarray)
Stellar luminosity in Solar luminosities

Binary Cut (boolean ndarray)
Booleans where True is a star with a companion closer than 10arcsec

dist (astropy Quantity array)
Distance to star in units of pc. Defaults to 1.

parx (astropy Quantity array)
Parallax in units of mas. Defaults to 1000.

coords (astropy SkyCoord array)
SkyCoord object containing right ascension, declination, and distance to star in units of deg, deg, and pc.

pmra (astropy Quantity array)
Proper motion in right ascension in units of mas/year

pmdec (astropy Quantity array)
Proper motion in declination in units of mas/year

rv (astropy Quantity array)
Radial velocity in units of km/s

5.2 Planet Population
The Planet Population module encodes the probability density functions of all required planetary parameters, both

physical and orbital. These include semi-major axis, eccentricity, orbital orientation, radius, mass, and geometric albedo
(see §5.2.2). Certain parameter models may be empirically derived while others may come from analyses of observational
surveys. This module also encodes the limits on all parameters to be used for sampling the distributions and determining
derived cutoff values such as the maximum target distance for a given instrument’s IWA.

The coordinate system of the simulated exosystems is defined as in Figure 4. The observer looks at the target star along
the s3 axis, located at a distance −ds from the target at the time of observation. The argument of periapse, inclination, and
longitude of the ascending node (ω, I,Ω) are defined as a 3-1-3 rotation about the unit vectors defining the S reference frame.
This rotation defines the standard Equinoctial reference frame (ê, q̂, ĥ), with the true anomaly (ν) measured from ê). The
planet-star orbital radius vector rP/S is projected into the s1,s2 plane as the projected separation vector s, with magnitude s,
and the phase (star-planet-observer) angle (β) is closely approximated by the angle between rP/s and its projection onto s3.

The Planet Population module does not model the physics of planetary orbits or the amount of light reflected or emitted
by a given planet, but rather encodes the statistics of planetary occurrence and properties.

5.2.1 Planet Population Object Attribute Initialization
Input

The following are all entries in the passed specs dictionary (derived from the JSON script file or another dictionary).
Values not specified will be replaced with defaults, as listed. It is important to note that many of these (in particular mass
and radius) may be mutually dependent, and so some implementation may choose to only use some for inputs and set the
rest via the physical models.

arange (float 1×2 array)
Semi-major axis range in units of AU . Default value is [0.01, 100]

erange (float 1×2 array)
Eccentricity range. Default value is [0.01,0.99]

Irange (float 1×2 array)
Inclination range in units of deg. Default value is [0,180]

Orange (float 1×2 array)
Ascension of the ascending node range in units of deg. Default value is [0,360]

wrange (float 1×2 array)
Perigee range in units of deg. Default value is [0,360]

prange (float 1×2 array)
Planetary geometric albedo range. Default value is [0.1,0.6]

Rprange (float 1×2 array)
Planetary Radius in Earth radii. Default value is [1, 30]

Mprange (float 1×2 array)
Planetary mass in Earth masses. Default value is [1, 4131]

14

http://astropy.readthedocs.org/en/latest/api/astropy.coordinates.SkyCoord.html

Fig. 4. Definition of reference frames and coordinates of simulated exosystems. The observer lies along the negative s3 axis so that the
observer-star unit vector is +s3.

scaleOrbits (boolean)
Boolean where True means planetary orbits are scaled by the square root of stellar luminosity. Default value is
False.

constrainOrbits (boolean)
Boolean where True means planetary orbits are constrained to never leave the semi-major axis range (arange).
Default value is False.

eta (float)
The average occurrence rate of planets per star for the entire population. The expected number of planets generated
per simulation is equal to the product of eta with the total number of targets. Note that this is the expectation value
only—the actual number of planets generated in a given simulation may vary depending on the specific method of
sampling the population.

Attributes
PlanetPhysicalModel (PlanetPhysicalModel module)

PlanetPhysicalModel class object
arange (astropy Quantity 1×2 array)

Semi-major axis range defined as [a min, a max] in units of AU
erange (float 1×2 ndarray)

Eccentricity range defined as [e min, e max]
Irange (astropy Quantity 1×2 array)

Planetary orbital inclination range defined as [I min, I max] in units of deg
Orange (astropy Quantity 1×2 array)

15

Right ascension of the ascending node range defined as [O min, O max] in units of deg
wrange (astropy Quantity 1×2 array)

Argument of perigee range defined as [w min, w max] in units of deg
prange (float 1×2 ndarray)

Planetary geometric albedo range defined as [p min, p max]
Rprange (astropy Quantity 1×2 array)

Planetary radius range defined as [R min, R max] in units of earthRad
Mprange (astropy Quantity 1×2 array)

Planetary mass range defined as [Mp min, Mp max] in units of earthMass
rrange (astropy Quantity 1×2 array)

Planetary orbital radius range defined as [r min, r max] derived from PlanetPopulation.arange and PlanetPopula-
tion.erange, in units of AU

scaleOrbits (boolean)
Boolean where True means planetary orbits are scaled by the square root of stellar luminosity.

constrainOribts (boolean)
Boolean where True means planetary orbits are constrained to never leave the semi-major axis range (arange).
If set to True, an additional method (gen_eccen_from_sma) must be provided by the implementation—see
below.

eta (float)
The average occurrence rate of planets per star for the entire population.

uniform (float, callable)
Uniform distribution over a given range.

logunif (float, callable)
Log-uniform distribution over a given range.

5.2.2 Planet Population Value Generators
For each of the parameters represented by the input attributes, the planet population object will provide a method that

returns random values for the attributes, within the ranges specified by each attribute (so that, for example, there will be
samples of semi-major axis corresponding to arange, etc.). Each of these methods will take a single input of the number of
values to generate. These methods will encode the probability density functions representing each parameter, and use either
a rejection sampler or other (numpy or scipy) provided sampling method to generate random values. All returned values will
have the same type/default units as the attributes.

In cases where values need to be sampled jointly (for example if you have a joint distribution of semi-major axis and
planetary radius) then the sampling will be encoded in the gen_plan_params function. In cases where there is a deter-
ministic calculation of one parameter from another (as in mass calculated from radius) this will be provided separately in the
Planet Physical module. Any non-standard distribution functions being sampled by one of these methods should be created
as object attributes in the implementation constructor so that they are available to other modules.

The methods are:

gen plan params Returns values of semi-major axis (in units of AU), eccentricity, geometric albedo, and planetary
radius (in units of earthRad)

gen angles Returns values of orbital inclination, longitude of the ascending node, and argument of perigee,
all in units of deg

gen mass Returns planetary mass values in units of earthMass
dist sma Provides the probability density function for the semi-major axis

dist eccen Provides the probability density function for the eccentricity
dist eccen from sma Provides the probability density function for the eccentricity given a value of semi-major axis.

This function is used when constrainOrbits is set to True.
dist albedo Provides the probability density function for the albedo
dist radius Provides the probability density function for the radius

dist mass Provides the probability density function for the mass

5.3 Planet Physical Model
The Planet Physical Model module contains models of the light emitted or reflected by planets in the wavelength bands

under investigation by the current mission simulation. It takes as inputs the physical quantities sampled from the distribu-
tions in the Planet Population module and generates synthetic spectra (or band photometry, as appropriate). The specific

16

implementation of this module can vary greatly, and can be based on any of the many available planetary geometric albedo,
spectra and phase curve models. As required, this module also provides physical models relating dependent parameters that
cannot be sampled independently (for example density models relating plant mass and radius). While the specific methods
will depend highly on the physical models being used, the prototype provides four stubs that will be commonly useful:

calc albedo from sma Calculate planetary geometric albedo as a function of the semi-major axis.
calc radius from mass Calculate planetary radii from their masses.
calc mass from radius Calculate planetary masses from their radii.

calc Phi Calculate the value of the planet phase function given its phase angle. The prototype
implementation uses the Lambert phase function.

calc Teff Calcluate the effective planet temperature given the stellar luminosity, planet albedo and
star-planet distance.

5.4 Optical System
The Optical System module contains all of the necessary information to describe the planet signal and the background

noise, and calculate the integration time for a given observation. This first requires encoding the design of the telescope such
as the optics attenuation, the diameter of the entrance pupil and the fraction of it that is obscured (by spiders and secondary
mirror). A description of the science instruments is also required, with detector details such as read noise, dark current, and
readout cycle. The baseline is assumed to be an imager and a spectrograph. Finally, the Optical System must include the
performance of every selected starlight suppression systems, whether it be an internal coronagraph or an external occulter.
The Optical System module also contains all the mission observing modes. Each mode is defined by a combination of a
science instrument and a starlight suppression system, operating in a given spectral window.

The starlight suppression system throughput and contrast - or residual intensity - can be encoded with angular separation
and wavelength dependant definitions. Some specific Optical System modules may also require encoding the Point Spread
Functions (PSF) for on- and off-axis sources. At the opposite level of complexity, the encoded portions of this module may
be a description of all of the optical elements between the telescope aperture and the science camera, along with a method of
propagating an input wavefront to the final image plane. Intermediate implementations can include partial propagations, or
collections of static PSFs representing the contributions of various system elements. The encoding of the optical train will
allow for the extraction of specific bulk parameters including the instrument inner working angle (IWA), outer working angle
(OWA), and mean and max contrast and throughput.

By definition, the detection mode IWA correspond to the working angle at which integration times are calculated during
the detection phase. This IWA must not be confused with the global IWA. There are 3 types of IWA/OWA:
1- Each coronagraph has its own IWA/OWA in arcsec defined at its operation wavelength.
2- Each observing mode has its own IWA/OWA, based on the coronagraph IWA/OWA and rescaled to the modes specific
wavelength. For simple cases where no observing modes are specified, the detection IWA will simply correspond to the
coronagraph IWA.
3- A global IWA/OWA can be specified for the whole telescope, to filter out targets during the initialization, thus before the
mission starts. By defaults, the global IWA = minimum(mode IWAs) and global OWA = maximum(mode OWAs). However,
the user can specify a global IWA that is very small or even zero to avoid filtering out targets during initialization, without
affecting the detection IWA described above.

The input and output of the Optical System methods are depicted in Figure 5. The Optical System module has three
methods used in simulation:

Cp Cb Csp Called by calc_intTime to calculate the electron count rates for planet signal, back-
ground noise, and speckle residuals (see §5.4.2).

calc intTime Calculates the integration times for specific values of planet zodiacal noise, delta mag-
nitude, and angular separation (see §5.4.3).

calc minintTime Calculates the minimum integration times for all the stars from the target list, using
optimistic input parameters (see §5.4.4).

calc dMag per intTime Calculates achievable planet delta magnitude per integration time (see §5.4.5).
ddMag dt Calculates derivative of achievable delta mag per integration time (see §5.4.6).

5.4.1 Optical System Object Attribute Initialization
The specific set of inputs to this module will vary based on the simulation approach used. Here we define the specifica-

tion for the case where static PSF(s), derived from external diffraction modeling, are used to describe the system. Note that
some of the inputs are specific to “internal” or “external” (i.e. starshade) systems and will be expected based on the occulter
flag.

17

Fig. 5. Depiction of Optical System module methods including input and output (see §5.4.2, §5.4.3).

Input
obscurFac (float)

Obscuration factor due to secondary mirror and spiders. Default value is 0.1.
shapeFac (float)

Shape factor of the unobscured pupil area, so that shapeFac× pupilDiam2× (1−obscurFac) = pupilArea. De-
fault value is π

4 .
pupilDiam (float)

Entrance pupil diameter in m. Default value is 4.
IWA (float)

Fundamental Inner Working Angle in units of arcsec. No planets can ever be observed at smaller separations. If
not set, defaults to smallest IWA of all starlightSuppressionSystems.

OWA (float)
Fundamental Outer Working Angle in units of arcsec. Set to In f for no OWA. If not set, defaults to largest OWA
of all starlightSuppressionSystems. JSON values of 0 will be interpreted as In f .

intCutoff (float)
Maximum allowed integration time in units of day. No integration will be started that would take longer than this
value. Default value is 50.

dMag0 (float)
Favorable planet delta magnitude value used to calculate the minimum integration times for inclusion in target list.

WA0 (float)
Instrument working angle value used to calculate the minimum integration times for inclusion in target list (defaults
to detection IWA-OWA midpoint), in units of arcsec.

scienceInstruments (list of dicts)
List of dictionaries containing specific attributes of all science instruments. For each instrument, if the below
attributes are missing from the dictionary, they will be assigned the default values listed, or any value directly
passed as input to the class constructor.
name (string)

(Required) Instrument name (e.g. imager-EMCCD, spectro-CCD), should contain the type of instrument
(imager or spectro). Every instrument should have a unique name.

QE (float, callable)
Detector quantum efficiency: either a scalar for constant QE, or a two-column array for wavelength-dependent
QE, where the first column contains the wavelengths in units of nm. May be data or FITS filename. Default
is scalar 0.9.

18

optics (float)
Attenuation due to optics specific to the science instrument. Default value is 0.5.

FoV (float)
Field of view in units of arcsec. Default value is 10.

pixelNumber (integer)
Detector array format, number of pixels per detector lines/columns. Default value is 1000.

pixelSize (float)
Pixel pitch in units of m. Default value is 1e-5.

sread (float)
Detector effective read noise per frame per pixel, including any gain (e.g. electron multiplication gain).
Default value is 1e-6.

idark (float)
Detector dark-current per pixel in units of 1/s. Default value is 1e-4.

CIC (float)
(Specific to CCDs) Clock-induced-charge per frame per pixel. Default value is 1e-3.

texp (float)
Exposure time per frame in units of s. Default value is 100.

radDos (float)
Radiation dosage. Default value is 0.

PCeff (float)
Photon counting efficiency. Default value is 0.8.

ENF (float)
(Specific to EM-CCDs) Excess noise factor. Default value is 1.

Rs (float)
(Specific to spectrometers) Spectral resolving power defined as λ/dλ. Default value is 50.

lenslSamp (float)
(Specific to spectrometers) Lenslet sampling, number of pixel per lenslet rows or cols. Default value is 2.

starlightSuppressionSystems (list of dicts)
List of dictionaries containing specific attributes of all starlight suppression systems. For each system, if the below
attributes are missing from the dictionary, they will be assigned the default values listed, or any value directly
passed as input to the class constructor. In case of multiple systems, specified wavelength values (lam, deltaLam,
BW) of the first system become the new default values.
The following items can be encoded either as scalar parameters, or as two-column arrays for angular separation-
dependent parameters, where the first column contains the separations in units of arcsec, or as 2D array for angular
separation- and wavelength- dependent parameters, where the first column contains the angular separation values
in units of arcsec and the first row contains the wavelengths in units of nm: occ trans, core thruput, core contrast,
core mean intensity, core area.

name (string)
(Required) System name (e.g. HLC-500, SPC-700), should also contain the central wavelength the system is
optimized for. Every system must have a unique Name.

optics (float)
Attenuation due to optics specific to the coronagraph, e.g. polarizer, Lyot stop, extra flat mirror. Default value
is 1.

lam (float)
Central wavelength λ in units of nm. Default value is 500.

deltaLam (float)
Bandwidth ∆λ in units of nm. Defaults to lambda × BW (defined hereunder).

BW (float)
Bandwidth fraction (∆λ/λ). Only applies when deltaLam is not specified. Default value is 0.2.

IWA (float)
Inner Working Angle of this system in units of arcsec. If not set, or if too small for this system con-
trast/throughput definitions, defaults to smallest WA of contrast/throughput definitions.

OWA (float)
Specific Outer Working Angle of this system in units of arcsec. Set to In f for no OWA. If not set, or if too
large for this system contrast/throughput definitions, defaults to largest WA of contrast/throughput definitions.
JSON values of 0 will be interpreted as In f .

occ trans (float, callable)

19

Intensity transmission of extended background sources such as zodiacal light. Includes pupil mask, occulter,
Lyot stop and polarizer. Default is scalar 0.2.

core thruput (float, callable)
System throughput in the FWHM region of the planet PSF core. Default is scalar 0.1.

core contrast (float, callable)
System contrast defined as the starlight residual normalized intensity in the PSF core, divided by the core
throughput. Default is scalar 1e-10.

core mean intensity (float, callable)
Mean starlight residual normalized intensity per pixel, required to calculate the total core intensity as core mean intensity×
N pix. If not specified, then the total core intensity is equal to core contrast× core thruput.

core area (float, callable)
Area of the FWHM region of the planet PSF, in units of arcsec2. If not specified, the default core area is equal

to π

(√
2

2
λ

D

)2
.

core platescale (float)
Platescale used for a specific set of coronagraph parameters, in units of lambda/D per pixel. Defaults to the
instrument pixelScale.

ohTime (float)
Optical system overhead time in units of day. Default value is 1. This is the (assumed constant) amount
of time required to set up the optical system (i.e., dig the dark hole or do fine alignment with the occulter).
It is added to every observation, and is separate from the observatory overhead defined in the observatory
module, which represents the observatory’s settling time. Both overheads are added to the integration time to
determine the full duration of each detection observation.

occulter (boolean)
True if the system has an occulter (external or hybrid system), otherwise False (internal system)

occulterDiameter (float)
Occulter diameter in units of m. Measured petal tip-to-tip.

NocculterDistances (integer)
Number of telescope separations the occulter operates over (number of occulter bands). If greater than 1, then
the occulter description is an array of dicts.

occulterDistance (float)
Telescope-occulter separation in units of km.

occulterBlueEdge (float)
Occulter blue end of wavelength band in units of nm.

occulterRedEdge (float)
Occulter red end of wavelength band in units of nm.

observingModes (list of dicts)
List of dictionaries containing specific attributes of all mission observing modes. Each observing mode is a combi-
nation of an instrument and a system, operating at a given wavelength, which by default is the wavelength defined
in the starlight suppression system of the observing mode. If an observing mode is operating at a different wave-
length than the system default wavelength, then this new wavelength must be added to the observing mode, and
the system performance will be automatically rescaled to the new wavelength. If no observing mode is defined,
the default observing mode simply combines the first instrument and the first system.

instName (string)
(Required) Instrument name. Must match with the name of a defined science instrument.

systName (string)
(Required) System name. Must match with the name of a defined starlight suppression system.

inst (dict)
Selected instrument of the observing mode.

syst (dict)
Selected system of the observing mode.

detectionMode (boolean)
True if this observing mode is the detection mode, otherwise False. Only one detection mode can be specified.
If not specified, default detection mode is first imager mode.

SNR (float)
Signal-to-noise ratio threshold. Defaults to 5.

timeMultiplier (float)
Integration time multiplier. Equal to the number of discrete integrations needed to cover the full field of view

20

(e.g. shaped pupil), or the full wavelength band and all required polarization states. For example, if the band
is split into three sub-bands, and there are two polarization states that must be measured, and each of these
must be done sequentially, then this value would equal 6. However, if the three sub-bands could be observed
at the same time (e.g., by separate detectors) then the value would be two (for the two polarization states).
Defaults to 1.

lam (float)
Central wavelength in units of nm. Defaults to corresponding system value.

deltaLam (float)
Bandwidth in units of nm. Defaults to corresponding system value.

BW (float)
Bandwidth fraction. Defaults to corresponding system value.

For all values that may be either scalars or interpolants, in the case where scalar values are given, the optical system module
will automatically wrap them in lambda functions so that they become callable (just like the interpolant) but will always
return the same value for all arguments. The inputs for interpolants may be filenames (full absolute paths) with tabulated
data, or NumPy ndarrays of argument and data (in that order in rows so that input[0] is the argument and input[1] is the data).
When the input is derived from a JSON file, these must either be scalars or filenames.

The starlight suppression system and science instrument dictionaries can contain any other attributes required by a
particular optical system implementation. The only significance of the ones enumerated above is that they are explicitly
checked for by the prototype constructor, and cast to their expected values.

Attributes
These will always be present in an OpticalSystem object and directly accessible as OpticalSystem.Attribute.

obscurFac (float)
Obscuration factor due to secondary mirror and spiders

shapeFac (float)
Shape factor of the unobscured pupil area, so that shapeFac× pupilDiam2× (1−obscurFac) = pupilArea

pupilDiam (astropy Quantity)
Entrance pupil diameter in units of m

pupilArea (astropy Quantity)
Entrance pupil area in units of m2

haveOcculter (boolean)
Boolean signifying if the system has an occulter

IWA (astropy Quantity)
Fundamental Inner Working Angle in units of arcsec

OWA (astropy Quantity)
Fundamental Outer Working Angle in units of arcsec

intCutoff (astropy Quantity)
Maximum allowed integration time in units of day

dMag0 (float)
Favorable planet delta magnitude value used to calculate the minimum integration times for inclusion in target list.

WA0 (astropy Quantity)
Instrument working angle value used to calculate the minimum integration times for inclusion in target list.

scienceInstruments (list of dicts)
List of dictionaries containing all supplied science instrument attributes. Typically the first instrument will be the
imager, and the second the spectrograph (IFS). Only required attribute is ‘name’. See above for other commonly
used attributes.

starlightSuppressionSystems (list of dicts)
List of dictionaries containing all supplied starlight suppression system attributes. Typically the first system will
be used with the imager, and the second with the IFS. Only required attribute is ‘name’. See above for other
commonly used attributes.

observingModes (list of dicts)
List of dictionaries containing all mission observing modes. Only required attribute are ‘instName’ and ‘syst-
Name’. See above for other commonly used attributes.

5.4.2 Cp Cb Csp Method
The Cp_Cb_Csp method calculates the electron count rates for planet signal, background noise, and speckle residuals.

21

Input
TL (TargetList module)

TargetList class object, see §5.9 for definition of available attributes
sInds (integer ndarray)

Integer indices of the stars of interest
fZ (astropy Quantity array)

Surface brightness of local zodiacal light in units of 1/arcsec2

fEZ (astropy Quantity array)
Surface brightness of exo-zodiacal light in units of 1/arcsec2

dMag (float ndarray)
Differences in magnitude between planets and their host star.

WA (astropy Quantity array)
Working angles of the planets of interest in units of arcsec

mode (dict)
Selected observing mode

Output
C p (astropy Quantity array)

Planet signal electron count rate in units of 1/s
C b (astropy Quantity array)

Background noise electron count rate in units of 1/s
C sp (astropy Quantity array)

Residual speckle spatial structure (systematic error) in units of 1/s

5.4.3 calc intTime Method
The calc_intTime method calculates the integration time required for specific planets of interest. This method is

called from the SurveySimulation module.

Input
TL (TargetList module)

TargetList class object, see §5.9 for definition of available attributes
sInds (integer ndarray)

Integer indices of the stars of interest
fZ (astropy Quantity array)

Surface brightness of local zodiacal light in units of 1/arcsec2

fEZ (astropy Quantity array)
Surface brightness of exo-zodiacal light in units of 1/arcsec2

dMag (float ndarray)
Differences in magnitude between planets and their host star.

WA (astropy Quantity array)
Working angles of the planets of interest in units of arcsec

mode (dict)
Selected observing mode

Output
intTime (astropy Quantity array)

Integration time for each of the planets of interest in units of day

5.4.4 calc minintTime Method
The calc_minintTime method calculates the minimum integration time for each star in the target list. This method

is called from the TargetList module.

Input
TL (TargetList module)

TargetList class object, see §5.9 for definition of available attributes

22

Output
minintTime (astropy Quantity array)

Minimum integration time for each target star in units of day

5.4.5 calc dMag per intTime Method
The calc_dMag_per_intTime method calculates the achievable planet delta magnitude (delta mag) for one inte-

gration time per star in the input list at one or more working angles.

Input
intTime (astropy Quantity array)

Integration times in units of day
TL (TargetList module)

TargetList class object, see §5.9 for definition of available attributes
sInds (integer ndarray)

Integer indices of the stars of interest
fZ (astropy Quantity array)

Surface brightness of local zodiacal light in units of 1/arcsec2

fEZ (astropy Quantity array)
Surface brightness of exo-zodiacal light in units of 1/arcsec2

WA (astropy Quantity array)
Working angles of the planets of interest in units of arcsec

mode (dict)
Selected observing mode

Output
dMag (float ndarray)

Achievable dMag for given integration time and working angle

5.4.6 ddMag dt Method
The ddMag_dt method calculates the derivative of achievable dMag with respect to integration time.

Input
intTime (astropy Quantity array)

Integration times in units of day
TL (TargetList module)

TargetList class object, see §5.9 for definition of available attributes
sInds (integer ndarray)

Integer indices of the stars of interest
fZ (astropy Quantity array)

Surface brightness of local zodiacal light in units of 1/arcsec2

fEZ (astropy Quantity array)
Surface brightness of exo-zodiacal light in units of 1/arcsec2

WA (astropy Quantity array)
Working angles of the planets of interest in units of arcsec

mode (dict)
Selected observing mode

Output
ddMagdt (astropy Quantity array)

Derivative of achievable dMag with respect to integration time in units of 1/s

5.5 Zodiacal Light
The input and output of the Zodiacal Light methods are depicted in Figure 6. The Zodiacal Light module contains two

methods:

23

fZ Calculates the surface brightness of local zodiacal light (see §5.5.2)
fEZ Calculates the surface brightness of exozodiacal light (see §5.5.3)

Fig. 6. Depiction of Zodiacal Light module methods including input and output (see §5.5.2 and §5.5.3).

5.5.1 Zodiacal Light Object Attribute Initialization
Input

magZ (float)
Zodiacal light brightness magnitude (per arcsec2). Defaults to 23.

magEZ (float)
Exo-zodiacal light brightness magnitude (per arcsec2). Defaults to 22.

varEZ (float)
Exo-zodiacal light variation (variance of log-normal distribution). Defaults to 0 (constant exo-zodiacal light).

Attributes
magZ (float)

Zodi brightness magnitude (per arcsec2)
magEZ (float)

Exo-zodi brightness magnitude (per arcsec2)
varEZ (float)

Exo-zodiacal light variation (variance of log-normal distribution)
fZ0 (astropy Quantity)

Default surface brightness of zodiacal light in units of 1/arcsec2

fEZ0 (astropy Quantity)
Default surface brightness of exo-zodiacal light in units of 1/arcsec2

5.5.2 fZ Method
The fZ method returns surface brightness of local zodiacal light for planetary systems. This functionality is used by the

Simulated Universe module.

Input
Obs (Observatory module)

Observatory class object, see §5.11 for description of functionality and attributes

24

TL (TargetList module)
TargetList class object, see §5.9 for description of functionality and attributes

sInds (integer ndarray)
Integer indices of the stars of interest

currentTime (astropy Time array)
Current absolute mission time in MJD

mode (dict)
Selected observing mode

Output
fZ (astropy Quantity array)

Surface brightness of zodiacal light in units of 1/arcsec2

5.5.3 fEZ Method
The fEZ method returns surface brightness of exo-zodiacal light for planetary systems. This functionality is used by

the Simulated Universe module.

Input
MV (integer ndarray)

Apparent magnitude of the star (in the V band)
I (astropy Quantity array)

Inclination of the planets of interest in units of deg
d (astropy Quantity n×3 array)

Distance to star of the planets of interest in units of AU

Output
fEZ (astropy Quantity array)

Surface brightness of exo-zodiacal light in units of 1/arcsec2

5.6 Background Sources
The Background Sources module provides density of background sources for a given target based on its coordinates and

the integration depth. The integration depth is the limiting planet magnitude, that is the magnitude of the faintest planet we
can observe. This will be used in the post-processing module to determine false alarms based on confusion. The prototype
module has no inputs and only a single function: dNbackground (see §5.6.1).

5.6.1 dNbackground Method
Input

coords (astropy SkyCoord array)
SkyCoord object containing right ascension, declination, and distance to star of the planets of interest in units of
deg, deg and pc.

intDepths (float ndarray)
Integration depths equal to the planet magnitude (Vmag+dMag), i.e. the V magnitude of the dark hole to be
produced for each target. Must be of same length as coords.

Output
dN (astropy Quantity array)

Number densities of background sources for given targets in units of 1/arcmin2. Same length as inputs.

5.7 Post-Processing
The Post-Processing module encodes the effects of post-processing on the data gathered in a simulated observation, and

the effects on the final contrast of the simulation. The Post-Processing module is also responsible for determining whether
a planet detection has occurred for a given observation, returning one of four possible states—true positive (real detection),
false positive (false alarm), true negative (no detection when no planet is present) and false negative (missed detection).
These can be generated based solely on statistical modeling or by processing simulated images.

25

http://astropy.readthedocs.org/en/latest/time/index.html
http://astropy.readthedocs.org/en/latest/api/astropy.coordinates.SkyCoord.html

The Post-Processing module contains the det_occur method (see §5.7.2). This method determines if a planet detec-
tion occurs for a given observation. The input and output of this method are depicted in Figure 7.

Fig. 7. Depiction of Post-Processing module method including input and output (see §5.7.2).

5.7.1 Post-Processing Object Attribute Initialization
Input

FAP (float)
Detection false alarm probability. Default value is 3×10−7.

MDP (float)
Missed detection probability. Default value is 10−3.

ppFact (float, callable)
Post-processing contrast factor, between 0 and 1: either a scalar for constant gain, or a two-column array for
separation-dependent gain, where the first column contains the angular separation in units of arcsec. May be data
or FITS filename. Default value is 1.

FAdMag0 (float, callable)
Minimum delta magnitude that can be obtained by a false alarm: either a scalar for constant dMag, or a two-
column array for separation-dependent dMag, where the first column contains the angular separation in units of
arcsec. May be data or FITS filename. Default value is 15.

Attributes
BackgroundSources (BackgroundSources module)

BackgroundSources class object (see 5.6)
FAP (float)

Detection false alarm probability
MDP (float)

Missed detection probability
ppFact (float, callable)

Post-processing contrast factor, between 0 and 1.
FAdMag0 (float, callable)

Minimum delta magnitude that can be obtained by a false alarm.

5.7.2 det occur Method
The det_occur method determines if a planet detection has occurred.

Input
SNR (float ndarray)

Signal-to-noise ratio of the planets around the selected target

26

mode (dict)
Selected observing mode

TL (TargetList module)
TargetList class object

sInd (integer)
Index of the star being observed

intTime (astropy Quantity)
Selected star integration time for detection

Output
FA (boolean)

False alarm (false positive) boolean.
MD (boolean ndarray)

Missed detection (false negative) boolean with the size of number of planets around the target.

5.8 Completeness
The Completeness module takes in information from the Planet Population module to determine initial completeness

and update completeness values for target list stars when called upon.
The Completeness module contains the following methods:

target completeness Generates initial completeness values for each star in the target list (see §5.8.2)
gen update generates dynamic completeness values for successive observations of each star in the

target list (see §5.8.3)
completeness update Updates the completeness values following an observation (see §5.8.4)

comp per intTime Calculates completeness values per integration time (see §5.8.5)
dcomp dt Calculates derivative of completeness with respect to integration time (see §5.8.6)

5.8.1 Completeness Object Attribute Initialization
Input

dMagLim (float)
Limiting planet-to-star delta magnitude for completeness. Defaults to 25.

minComp (float)
Minimum completeness value for inclusion in target list. Defaults to 0.1.

Monte Carlo methods for calculating completeness will require an input of the number of planet samples called Nplanets.

Attributes
PlanetPopulation (PlanetPopulation module)

PlanetPopulation object (see 5.2)
PlanetPhysicalModel (PlanetPhysicalModel module)

PlanetPhysicalModel module object (see 5.3)
dMagLim (float)

Limiting planet-to-star delta magnitude for completeness
minComp (float)

Minimum completeness value for inclusion in target list

5.8.2 target completeness Method
The target_completeness method generates completeness values for each star in the target list.

Input
TL (TargetList module)

TargetList class object, see §5.9 for definition of functionality and attributes

Output
comp0 (float ndarray)

Contains completeness values for each star in the target list

27

5.8.3 gen update Method
The gen_update method generates dynamic completeness values for successive observations of each star in the target

list.

Input
TL (TargetList module)

TargetList class object, see §5.9 for definition of functionality and attributes

5.8.4 completeness update Method
The completeness_update method updates the completeness values for each star in the target list following an

observation.

Input
TL (TargetList module)

TargetList class object, see §5.9 for definition of functionality and attributes
sInds (integer array)

Indices of stars to update
visits (integer array)

Number of visits for each star
dt (astropy Quantity array)

Time since previous observation

Output
comp0 (float ndarray)

Updated completeness values for each star in the target list

5.8.5 comp per intTime Method
The comp_per_intTime method calculates the completeness values per integration time.

Input
intTime (astropy Quantity array)

Integration times in units of day
TL (TargetList module)

TargetList class object, see §5.9 for definition of available attributes
sInds (integer ndarray)

Integer indices of the stars of interest
fZ (astropy Quantity array)

Surface brightness of local zodiacal light in units of 1/arcsec2

fEZ (astropy Quantity array)
Surface brightness of exo-zodiacal light in units of 1/arcsec2

WA (astropy Quantity array)
Working angles of the planets of interest in units of arcsec

mode (dict)
Selected observing mode

Output
comp (float ndarray)

Completeness values

5.8.6 dcomp dt Method
The dcomp_dt method calculates the derivative of completeness with respect to integration time.

28

Input
intTime (astropy Quantity array)

Integration times in units of day
TL (TargetList module)

TargetList class object, see §5.9 for definition of available attributes
sInds (integer ndarray)

Integer indices of the stars of interest
fZ (astropy Quantity array)

Surface brightness of local zodiacal light in units of 1/arcsec2

fEZ (astropy Quantity array)
Surface brightness of exo-zodiacal light in units of 1/arcsec2

WA (astropy Quantity array)
Working angles of the planets of interest in units of arcsec

mode (dict)
Selected observing mode

Output
dcomp (float ndarray)

Derivative of completeness with respect to integration time

5.9 Target List
The Target List module takes in information from the Star Catalog, Optical System, Zodiacal Light, Post Processing,

Background Sources, Completeness, PlanetPopulation, and Planet Physical Model modules to generate the target list for
the simulated survey. This list can either contain all of the targets where a planet with specified parameter ranges could be
observed or a list of pre-determined targets such as in the case of a mission which only seeks to observe stars where planets
are known to exist from previous surveys. The final target list encodes all of the same information as is provided by the Star
Catalog module.

The TargetList module contains the following methods:

populate target list Populates values from the star catalog, and updates relevant TargetList attributes (see
§5.9.2)

filter target list Filters the target list by any required metrics (see §5.9.3 and §5.9.4)
starprop Finds target star positions vector (see §5.9.5)
starMag Calculates star visual magnitudes with B-V color (see §5.9.6)

stellarTeff Calculates the effective stellar temperature based on B-V color (see §5.9.7)

5.9.1 Target List Object Attribute Initialization
Input

staticStars (boolean)
Boolean used to force static target positions set at mission start time.

keepStarCatalog (boolean)
Boolean representing whether to delete the star catalog object after the target list is assembled (defaults to False).
If True, object reference will be available from TargetList class object.

Attributes
(StarCatalog values)

Mission specific filtered star catalog values from StarCatalog class object (see 5.1)
StarCatalog (StarCatalog module)

StarCatalog class object (only retained if keepStarCatalog is True, see 5.1)
PlanetPopulation (PlanetPopulation module)

PlanetPopulation class object (see 5.2)
PlanetPhysicalModel (PlanetPhysicalModel module)

PlanetPhysicalModel class object (see 5.3)
OpticalSystem (OpticalSystem module)

OpticalSystem class object (see 5.4)

29

ZodiacalLight (ZodiacalLight module)
ZodiacalLight class object (see 5.5)

BackgroundSources (BackgroundSources module)
BackgroundSources class object (see 5.6)

PostProcessing (PostProcessing module)
PostProcessing class object (see 5.7)

Completeness (Completeness module)
Completeness class object (see 5.8)

tint0 (astropy Quantity array)
Minimum integration time for each target star. Calculated from OpticalSystem.calc_minintTime §5.4.4

comp0 (float ndarray)
Completeness value for each target star. Calculated from Completeness.target_completeness §5.8.2

MsEst (float ndarray)
Approximate stellar mass in Msun

MsTrue (float ndarray)
Stellar mass with an error component included in Msun

nStars (int)
Number of target stars

5.9.2 populate target list Method
The populate_target_listmethod is responsible for populating values from the star catalog (or any other source)

into the target list attributes. It has not specific inputs and outputs, but is always passed the full specification dictionary, and
updates all relevant Target List attributes. This method is called from the prototype constructor, and does not need to be
called from the implementation constructor when overloaded in the implementation. The prototype implementation copies
values directly from star catalog and removes stars with any NaN attributes. It also calls the target_completeness
in the Completeness module (§5.8.2) and the calc_minintTime in the Optical System module (§5.4.4) to generate the
initial completeness and minimum integration time for all targets. It also generates ’true’ and ’approximate’ star masses
using object method stellar_mass (see below).

5.9.3 filter target list Method
The filter_target_list method is responsible for filtering the targetlist to produce the values from the star

catalog (or any other source) into the target list attributes. It has not specific inputs and outputs, but is always passed the full
specification dictionary, and updates all relevant Target List attributes. This method is called from the prototype constructor,
immediately after the populate_target_list call, and does not need to be called from the implementation constructor
when overloaded in the implementation. The prototype implementation filters out any targets where the widest separation
planet in the modeled population would be inside the system IWA, any targets where the minimum integration time for
favorable planet delta magnitude and instrument working angle is above the specified integration time cutoff, and all targets
where the initial completeness is below the specified threshold.

5.9.4 Target List Filtering Helper Methods
The filter_target_list method calls multiple helper functions to perform the actual filtering tasks. Additional

filters can be defined in specific implementations and by overloading the filter_target_list method. The filter
subtasks (with a few exception) take no inputs and operate directly on object attributes. The prototype TargetList module
calls the following methods to remove the corresponding stars:

nan filter Stars with NAN values in their parameters
binary filter Binary stars

outside IWA filter Systems with planets inside the OpticalSystem fundamental IWA
int cutoff filter Systems where minimum integration time is longer than OpticalSystem cutoff

completeness filter Systems not meeting the Completeness threshold

5.9.5 starprop Method
The starprop method finds target star positions vector in heliocentric equatorial (default) or ecliptic frame for current

time (MJD).

30

Input
sInds (integer ndarray)

Indices of the stars of interest
currentTime (astropy Time array)

Current absolute mission time in MJD
eclip (boolean)

Boolean used to switch to heliocentric ecliptic frame. Defaults to False, corresponding to heliocentric equatorial
frame.

Output
r targ (astropy Quantity n×3 array)

Target star positions vector in heliocentric equatorial (default) or ecliptic frame in units of pc

5.9.6 starMag Method
The starMag method calculates star visual magnitudes with B-V color using empirical fit to data from Pecaut and

Mamajek (2013, Appendix C). The expression for flux is accurate to about 7%, in the range of validity 400 nm < λ < 1000
nm (Traub et al. 2016).

Input
sInds (integer ndarray)

Indices of the stars of interest
lam (astropy Quantity)

Wavelength in units of nm

Output
mV (float ndarray)

Star visual magnitudes with B-V color

5.9.7 stellarTeff Method
The stellarTeff method calculates the effective stellar temperature based on B-V color.

Input
sInds (integer ndarray)

Indices of the stars of interest

Output
mV (float ndarray)

Star visual magnitudes with B-V color

5.10 Simulated Universe
The Simulated Universe module instantiates the Target List module and creates a synthetic universe by populating

planetary systems about some or all of the stars in the target list. For each target, a planetary system is generated based
on the statistics encoded in the Planet Population module, so that the overall planet occurrence and multiplicity rates are
consistent with the provided distribution functions. Physical parameters for each planet are similarly sampled from the input
density functions (or calculated via the Planet physical model). All planetary orbital and physical parameters are encoded as
arrays of values, with an indexing array that maps planets to the stars in the target list.

All planetary parameters are generated in the constructor via calls to the appropriate value generating functions in the
planet population module. The input and updated attributes of the Simulated Universe methods are depicted in Figure 8. The
Simulated Universe module contains the following methods:

gen physical properties Populates the orbital elements and physical characteristics of all planets (see §5.10.2)
init systems Finds initial time-dependant parameters such as position and velocity vectors, along with

exo-zodiacal surface brightness, delta magnitude, and working angle (see §5.10.3)

31

http://astropy.readthedocs.org/en/latest/time/index.html

propag system Propagates planet time-dependant parameters (position, velocity, distance, separation,
exozodiacal brightness, delta magnitude, and working angle) in time (see §5.10.4)

dump systems Create a dictionary of planetary properties for archiving use (see §5.10.5)
dump system params Create a dictionary of time-dependant planet properties for a specific target (see §5.10.6)
revise planets list Replaces Simulated Universe planet attributes with filtered values, and updates the num-

ber of planets (see §5.10.7)
revise stars list Revises the TargetList with filtered values, and updates the planets list accordingly (see

§5.10.8)

Fig. 8. Depiction of Simulated Universe module methods including input and updated attributes (see 5.10.2, 5.10.3, 5.10.4, 5.10.5, 5.10.6,
5.10.7, and 5.10.8).

5.10.1 Attributes
StarCatalog (StarCatalog module)

StarCatalog class object (only retained if keepStarCatalog is True, see 5.1)
PlanetPopulation (PlanetPopulation module)

PlanetPopulation class object (see 5.2)
PlanetPhysicalModel (PlanetPhysicalModel module)

PlanetPhysicalModel class object (see 5.3)
OpticalSystem (OpticalSystem module)

OpticalSystem class object (see 5.4)
ZodiacalLight (ZodiacalLight module)

ZodiacalLight class object (see 5.5)
BackgroundSources (BackgroundSources module)

BackgroundSources class object (see 5.6)
PostProcessing (PostProcessing module)

PostProcessing class object (see 5.7)
Completeness (Completeness module)

Completeness class object (see 5.8)
TargetList (TargetList module)

TargetList class object (see 5.9)

32

nPlans (integer)
Total number of planets

plan2star (integer ndarray)
Indices mapping planets to target stars in TargetList

sInds (integer ndarray)
Unique indices of stars with planets in TargetList

a (astropy Quantity array)
Planet semi-major axis in units of AU

e (float ndarray)
Planet eccentricity

I (astropy Quantity array)
Planet inclination in units of deg

O (astropy Quantity array)
Planet right ascension of the ascending node in units of deg

w (astropy Quantity array)
Planet argument of perigee in units of deg

M0 (astropy Quantity array)
Initial mean anomaly in units of deg

p (float ndarray)
Planet albedo

Rp (astropy Quantity array)
Planet radius in units of earthRad

Mp (astropy Quantity array)
Planet mass in units of earthMass

r (astropy Quantity n×3 array)
Planet position vector in units of AU

v (astropy Quantity n×3 array)
Planet velocity vector in units of AU/day

d (astropy Quantity array)
Planet-star distances in units of AU

s (astropy Quantity array)
Planet-star apparent separations in units of AU

phi (float ndarray)
Planet phase function, given its phase angle

fEZ (astropy Quantity array)
Surface brightness of exozodiacal light in units of 1/arcsec2, determined from ZodiacalLight.fEZ §5.5.3

dMag (float ndarray)
Differences in magnitude between planets and their host star

WA (astropy Quantity array)
Working angles of the planets of interest in units of arcsec

5.10.2 gen physical properties Method
The gen_physical_properties method generates the planetary systems for the current simulated universe. This

routine populates arrays of the orbital elements and physical characteristics of all planets, and generates indexes that map
from planet to parent star. This method does not take any explicit inputs. It uses the inherited TargetList and PlanetPopulation
modules.

Generated Module Attributes
nPlans (integer)

Total number of planets
plan2star (integer ndarray)

Indices mapping planets to target stars in TargetList
sInds (integer ndarray)

Unique indices of stars with planets in TargetList
a (astropy Quantity array)

Planet semi-major axis in units of AU
e (float ndarray)

33

Planet eccentricity
I (astropy Quantity array)

Planet inclination in units of deg
O (astropy Quantity array)

Planet right ascension of the ascending node in units of deg
w (astropy Quantity array)

Planet argument of perigee in units of deg
M0 (astropy Quantity array)

Initial mean anomaly in units of deg
p (float ndarray)

Planet albedo
Mp (astropy Quantity array)

Planet mass in units of earthMass
Rp (astropy Quantity array)

Planet radius in units of earthRad

5.10.3 init systems Method
The init_systemsmethod finds initial time-dependant parameters. It assigns each planet an initial position, velocity,

planet-star distance, apparent separation, phase function, delta magnitude, working angle, surface brightness of exo-zodiacal
light, and initializes the planet current times to zero. This method does not take any explicit inputs. It uses the following
attributes assigned before calling this method:

SimulatedUniverse.a
SimulatedUniverse.e
SimulatedUniverse.I
SimulatedUniverse.O
SimulatedUniverse.w
SimulatedUniverse.M0
SimulatedUniverse.p
SimulatedUniverse.Mp
SimulatedUniverse.Rp
TargetList.MV
TargetList.dist

Generated Module Attributes
r (astropy Quantity n×3 array)

Planet position vector in units of AU
v (astropy Quantity n×3 array)

Planet velocity vector in units of AU/day
d (astropy Quantity array)

Planet-star distances in units of AU
s (astropy Quantity array)

Planet-star apparent separations in units of AU
phi (float ndarray)

Planet phase function given its phase angle, determined from PlanetPhysicalModel.calc_Phi §5.3
fEZ (astropy Quantity array)

Surface brightness of exozodiacal light in units of 1/arcsec2, determined from ZodiacalLight.fEZ §5.5.3
dMag (float ndarray)

Differences in magnitude between planets and their host star
WA (astropy Quantity array)

Working angles of the planets of interest in units of arcsec

5.10.4 propag system Method
The propag_system method propagates planet time-dependant parameters: position, velocity, planet-star distance,

apparent separation, and surface brightness of exo-zodiacal light.

34

Input
sInd (integer)

Index of the target system of interest
dt (astropy Quantity)

Time increment in units of day, for planet position propagation

Updated Module Attributes
r (astropy Quantity n×3 array)

Planet position vector in units of AU
v (astropy Quantity n×3 array)

Planet velocity vector in units of AU/day
d (astropy Quantity array)

Planet-star distances in units of AU
s (astropy Quantity array)

Planet-star apparent separations in units of AU
phi (float ndarray)

Planet phase function given its phase angle, determined from PlanetPhysicalModel.calc_Phi §5.3
fEZ (astropy Quantity array)

Surface brightness of exozodiacal light in units of 1/arcsec2, determined from ZodiacalLight.fEZ §5.5.3
dMag (float ndarray)

Differences in magnitude between planets and their host star
WA (astropy Quantity array)

Working angles of the planets of interest in units of arcsec

5.10.5 dump systems Method
The dump_systems method creates a dictionary of planetary properties for archiving use.

Output
systems (dict)

Dictionary of planetary properties

5.10.6 dump system params Method
The dump_system_params method creates a dictionary of time-dependant planet properties for a specific target.

Input
sInd (integer)

Index of the target system of interest

Output
systems (dict)

Dictionary of time-dependant planet properties

5.10.7 revise planets list Method
The revise_planets_list method replaces Simulated Universe planet attributes with filtered values, and updates

the number of planets.

Input
pInds (integer ndarray)

Planet indices to keep

5.10.8 revise stars list Method
The revise_stars_listmethod revises the TargetList with filtered values, and updates the planets list accordingly.

35

Input
sInds (integer ndarray)

Star indices to keep

5.11 Observatory
The Observatory module contains all of the information specific to the space-based observatory not included in the

Optical System module. The module has four main methods: orbit, solarSystem_body_position, keepout,
and distForces, which are implemented as functions within the module.

The observatory orbit plays a key role in determining which of the target stars may be observed for planet finding at a
specific time during the mission lifetime. The Observatory module’s orbit method takes the current mission time as input
and outputs the observatory’s position vector. The position vector is standardized throughout the modules to be referenced
to a heliocentric equatorial frame at the J2000 epoch. The observatory’s position vector is used in the keepout method to
determine which of the stars are observable at the current mission time.

The position vectors of bright objects such as the sun, the moon, and the solar system planets, are calculated by the
solarSystem_body_position method.

The keepout method determines which target stars are observable at a specific time during the mission simulation and
which are unobservable due to bright objects within the field of view. The keepout volume is determined by the specific
design of the observatory and, in certain cases, by the starlight suppression system. The keepout method takes the Target
List module and current mission time as inputs and outputs a list of the target stars which are observable at the current time.
It constructs position vectors of the target stars and bright objects which may interfere with observations with respect to the
observatory. These position vectors are used to determine if bright objects are in the field of view for each of the potential
stars under exoplanet finding observation. If there are no bright objects obstructing the view of the target star, it becomes a
candidate for observation in the Survey Simulation module. The solar keepout is typically encoded as allowable angle ranges
for the spacecraft-star unit vector as measured from the spacecraft-sun vector.

Finally, the distForces method determines the lateral and axial disturbance forces that apply on an external occulter
(i.e., starshade).

In addition to these methods, the observatory definition can also encode finite resources used by the observatory through-
out the mission. The most important of these is the fuel used for stationkeeping and repointing, especially in the case of
occulters which must move significant distances between observations. Other considerations could include the use of other
volatiles such as cryogens for cooled instruments, which tend to deplete solely as a function of mission time. This mod-
ule also allows for detailed investigations of the effects of orbital design on the science yield, e.g., comparing the original
baseline geosynchronous 28.5° inclined orbit for WFIRST with an L2 halo orbit, which is the new mission baseline.

The input and output of the Observatory module methods are depicted in Figure 9.

Fig. 9. Depiction of Observatory module methods including input and output (see §5.11.2, §5.11.3, §5.11.4, and §5.11.5).

36

5.11.1 Observatory Object Attribute Initialization
Input

koAngleMin (float)
Telescope minimum keepout angle in units of deg. Default value is 45.

koAngleMinMoon (float)
Telescope minimum keepout angle in units of deg, for the Moon only. Defaults to koAngleMin.

koAngleMinEarth (float)
Telescope minimum keepout angle in units of deg, for the Earth only. Defaults to koAngleMin.

koAngleMax (float)
Telescope maximum keepout angle (for occulter) in units of deg. Default value is 90.

koAngleSmall (float)
Telescope keepout angle for smaller (angular size) bodies in units of deg. Default value is 1.

checkKeepoutEnd (boolean)
Boolean signifying if the keepout method must be called at the end of each observation.

settlingTime (float)
Amount of time needed for observatory to settle after a repointing in units of day. Default value is 1.

thrust (float)
Occulter slew thrust in units of mN. Default value is 450.

slewIsp (float)
Occulter slew specific impulse in units of s. Default value is 4160.

scMass (float)
Occulter (maneuvering spacecraft) initial wet mass in units of kg. Default value is 6000.

dryMass (float)
Occulter (maneuvering spacecraft) dry mass in units of kg. Default value is 3400.

coMass (float)
Telescope (or non-maneuvering spacecraft) mass in units of kg. Default value is 5800.

occulterSep (float)
Occulter-telescope distance in units of km. Default value is 55000.

skIsp (float)
Specific impulse for station keeping in units of s. Default value is 220.

defburnPortion (float)
Default burn portion for slewing. Default value is 0.05

checkKeepoutEnd (boolean)
Boolean signifying if the keepout method must be called at the end of each observation. Default value is True.

forceStaticEphem (boolean)
Boolean, forcing use of static solar system ephemeris if set to True, even if jplephem module is present (see 5.11.3).
Default value is False.

spkpath (string)
String with full path to SPK kernel file (only used if using jplephem for solar system body propagation - see
5.11.3).

Attributes
koAngleMin (astropy Quantity)

Telescope minimum keepout angle in units of deg
koAngleMinMoon (astropy Quantity)

Telescope minimum keepout angle in units of deg, for the Moon only
koAngleMinEarth (astropy Quantity)

Telescope minimum keepout angle in units of deg, for the Earth only
koAngleMax (astropy Quantity)

Telescope maximum keepout angle (for occulter) in units of deg
koAngleSmall (astropy Quantity)

Telescope keepout angle for smaller (angular size) bodies in units of deg
settlingTime (astropy Quantity)

Amount of time needed for observatory to settle after a repointing in units of day
thrust (astropy Quantity)

Occulter slew thrust in units of mN
slewIsp (astropy Quantity)

37

Occulter slew specific impulse in units of s
scMass (astropy Quantity)

Occulter (maneuvering spacecraft) initial wet mass in units of kg
dryMass (astropy Quantity)

Occulter (maneuvering spacecraft) dry mass in units of kg
coMass (astropy Quantity)

Telescope (or non-maneuvering spacecraft) mass in units of kg
occulterSep (astropy Quantity)

Occulter-telescope distance in units of km
skIsp (astropy Quantity)

Specific impulse for station keeping in units of s
defburnPortion (float)

Default burn portion for slewing
flowRate (astropy Quantity)

Slew flow rate derived from thrust and slewIsp in units of kg/day
checkKeepoutEnd (boolean)

Boolean signifying if the keepout method must be called at the end of each observation
forceStaticEphem (boolean)

Boolean, forcing use of static solar system ephemeris if set to True.

5.11.2 orbit Method
The orbit method finds the heliocentric equatorial position vector of the observatory spacecraft.

Input
currentTime (astropy Time array)

Current absolute mission time in MJD

Output
r sc (astropy Quantity n×3 array)

Observatory orbit position in HE reference frame at current mission time in units of km

5.11.3 solarSystem body position Method
The solarSystem_body_position returns the position of any solar system body (Earth, Sun, Moon, etc.) at

a given time in the common Heliocentric Equatorial frame. The observatory prototype will attempt to load the jplephem
module, and use a local SPK file for all propagations if available. The SPK file is not packaged with the software but
may be downloaded from JPL’s website at: http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/
planets/a_old_versions/. The location of the spk file is assumed to be in the Observatory directory but can be set
by the spkpath input.

If jplephem is not present, the Observatory prototype will load static ephemeris derived from Vallado (2004) and use
those for propagation. This behavior can be forced even when jplephem is available by setting the forceStaticEphem
input to True.

Input
currentTime (astropy Time)

Current absolute mission time in MJD
bodyname (string)

Solar system object name, capitalized by convention

Output
r body (astropy Quantity n×3 array)

Heliocentric equatorial position vector in units of km

5.11.4 keepout Method
The keepout method determines which stars in the target list are observable at the given input time.

38

http://astropy.readthedocs.org/en/latest/time/index.html
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/a_old_versions/
http://naif.jpl.nasa.gov/pub/naif/generic_kernels/spk/planets/a_old_versions/
http://astropy.readthedocs.org/en/latest/time/index.html

Input
TL (TargetList module)

TargetList class object, see §5.9 for definition of available attributes
sInds (integer ndarray)

Integer indices of the stars of interest
currentTime (astropy Time array)

Current absolute mission time in MJD
mode (dict)

Selected observing mode (from OpticalSystem)

Output
kogood (boolean ndarray)

True is a target unobstructed and observable, and False is a target unobservable due to obstructions in the keepout
zone.

5.11.5 distForces Method
The distForces method finds lateral and axial disturbance forces on an occulter .

Input
TL (TargetList module)

TargetList class object, see §5.9 for definition of available attributes
sInd (integer)

Integer index of the star of interest
currentTime (astropy Time array)

Current absolute mission time in MJD

Output
dF lateral (astropy Quantity)

Lateral disturbance force in units of N
dF axial (astropy Quantity)

Axial disturbance force in units of N

5.12 Time Keeping
The Time Keeping module is responsible for keeping track of the current mission time. It encodes only the mission

start time, the mission duration, and the current time within a simulation. All functions in all modules requiring knowledge
of the current time call functions or access parameters implemented within the Time module. Internal encoding of time is
implemented as the time from mission start (measured in units of day). The Time Keeping module also provides functionality
for converting between this time measure and standard measures such as Julian Day Number and UTC time.

The input, output and updated attributes of the Time Keeping methods are depicted in Figure 10. The Time Keeping
module contains two methods:

allocate time Allocates a temporal block of width dt, advancing the observation window if needed, and updates
the mission time during a survey simulation (see §5.12.2)

next observing block Defines the next observing block, start and end times (see §5.12.3)
mission is over Checks if the time allocated for the mission is used up (see §5.12.4)

5.12.1 Time Keeping Object Attribute Initialization
Input

missionStart (float)
Mission start time in MJD. Default value is 60634.

missionLife (float)
Total length of mission in units of year. Default value is 6.

extendedLife (float)
Extended mission time in units of year. Default value is 0. Extended life typically differs from the primary mission
in some way—most typically only revisits are allowed.

39

http://astropy.readthedocs.org/en/latest/time/index.html
http://astropy.readthedocs.org/en/latest/time/index.html

Fig. 10. Depiction of Time Keeping module method including input, output, and updated attributes (see §5.12.2, §5.12.3, and §5.12.4).

missionPortion (float)
Portion of mission time devoted to planet-finding. Default value is 1/6.

OBduration (float)
Default allocated duration of observing blocks, in units of day. If no OBduration was specified, a new observing
block is created for each new observation in the SurveySimulation module.

waitTime (float)
Default allocated duration to wait in units of day, when the Survey Simulation does not find any observable target.
Default value is 1.

waitMultiple (float)
Multiplier applied to the wait time in case of repeated empty lists of observable targets, which makes the wait time
grow exponentially. Default value is 2.

Attributes
missionStart (astropy Time)

Mission start time in MJD
missionLife (astropy Quantity)

Mission lifetime in units of year
extendedLife (astropy Quantity)

Extended mission time in units of year
missionPortion (float)

Portion of mission time devoted to planet-finding
missionFinishNorm

Mission finish time in units of day
missionFinishAbs (astropy Time)

Mission completion date in MJD
currentTimeNorm (astropy Quantity)

Current mission time normalized so that start date is 0, in units of day
currentTimeAbs (astropy Time)

Current absolute mission time in MJD
OBnumber (integer)

Index/number associated with the current observing block (OB). Each observing block has a duration, a start time,

40

http://astropy.readthedocs.org/en/latest/time/index.html
http://astropy.readthedocs.org/en/latest/time/index.html
http://astropy.readthedocs.org/en/latest/time/index.html

an end time, and can host one or multiple observations.
OBduration (astropy Quantity)

Default allocated duration of observing blocks, in units of day. If no OBduration was specified, a new observing
block is created for each new observation in the SurveySimulation module.

OBstartTimes (astropy Quantity array)
Array containing the normalized start times of each observing block throughout the mission, in units of day

OBendTimes (astropy Quantity array)
Array containing the normalized end times of each observing block throughout the mission, in units of day

obsStart (astropy Quantity)
Normalized start time of the observation currently executed by the Survey Simulation, in units of day

obsEnd (astropy Quantity)
Normalized end time of the observation currently executed by the Survey Simulation, in units of day

waitTime (astropy Quantity)
Default allocated duration to wait in units of day, when the Survey Simulation does not find any observable target

waitMultiple (float)
Multiplier applied to the wait time in case of repeated empty lists of observable targets, which makes the wait time
grow exponentially. As soon as an observable target is found, the wait time is reinitialized to the default waitTime
value.

5.12.2 allocate time Method
Input

dt (astropy Quantity)
Amount of time requested in units of day

Updated Module Attributes
currentTimeNorm (astropy Quantity)

Current mission time normalized so that start date is 0, in units of day
currentTimeAbs (astropy Time)

Current absolute mission time in MJD

5.12.3 next observing block Method
Input

dt (astropy Quantity)
Amount of time requested in units of day

Updated Module Attributes
OBstartTimes (astropy Quantity array)

Array containing the normalized start times of each observing block throughout the mission, in units of day
OBendTimes (astropy Quantity array)

Array containing the normalized end times of each observing block throughout the mission, in units of day
OBnumber (integer)

Index/number associated with the current observing block (OB). Each observing block has a duration, a start time,
an end time, and can host one or multiple observations.

5.12.4 mission is over Method
The mission_is_overmethod does not take any explicit inputs. It uses the updated module attribute currentTimeNorm.

Output
is over (boolean)

True if the mission time is used up, else False

5.13 Survey Simulation
This is the module that performs a specific simulation based on all of the input parameters and models. This module

returns the mission timeline - an ordered list of simulated observations of various targets on the target list along with their

41

http://astropy.readthedocs.org/en/latest/time/index.html

outcomes. The output also includes an encoding of the final state of the simulated universe (so that a subsequent simulation
can start from where a previous simulation left off) and the final state of the observatory definition (so that post-simulation
analysis can determine the percentage of volatiles expended, and other engineering metrics).

The input, output and updated attributes of the Survey Simulation methods are depicted in Figure 11. The Survey
Simulation module contains the following methods:

run sim Performs the survey simulation (see §5.13.2)
next target Finds index of next target star and calculates its integration time (see §5.13.3)

observation detection Determines detection status for a given integration time (see §5.13.4)
observation characterization Determines characterization time and status (see §5.13.5)

calc signal noise Calculates the signal and noise fluxes for a given time interval (see §5.13.6) -
called by observation_detection and observation_characterization

update occulter mass Updates the occulter wet mass in the Observatory module, and stores all the
occulter related values in the DRM array (see §5.13.7)

Fig. 11. Depiction of Survey Simulation module method including input, output, and updated attributes (see §5.13.2, §5.13.3, §5.13.4,
§5.13.5, §5.13.6 and §5.13.7).

5.13.1 Survey Simulation Object Attribute Initialization
Input

scriptfile (string)
JSON script file. If not set, assumes that dictionary has been passed through specs.

nt flux (integer)
Observation time sampling, to determine the integration time interval. Default value is 1.

nVisitsMax (integer)
Maximum number of observations (in detection mode) per star. Default value is 5.

charMargin (float)
Integration time margin for characterization. Default value is 15.

seed (integer)
Random seed used to make all random number generation reproducible.

42

WAint (float)
Working angle used for integration time calculation in units of arcsec.

dMagint (float)
Delta magnitude used for integration time calculation.

Attributes
StarCatalog (StarCatalog module)

StarCatalog class object (only retained if keepStarCatalog is True, see 5.1)
PlanetPopulation (PlanetPopulation module)

PlanetPopulation class object (see 5.2)
PlanetPhysicalModel (PlanetPhysicalModel module)

PlanetPhysicalModel class object (see 5.3)
OpticalSystem (OpticalSystem module)

OpticalSystem class object (see 5.4)
ZodiacalLight (ZodiacalLight module)

ZodiacalLight class object (see 5.5)
BackgroundSources (BackgroundSources module)

BackgroundSources class object (see 5.6)
PostProcessing (PostProcessing module)

PostProcessing class object (see 5.7)
Completeness (Completeness module)

Completeness class object (see 5.8)
TargetList (TargetList module)

TargetList class object (see 5.9)
SimulatedUniverse (SimulatedUniverse module)

SimulatedUniverse class object (see 5.10)
Observatory (Observatory module)

Observatory class object (see 5.11)
TimeKeeping (TimeKeeping module)

TimeKeeping class object (see 5.12)
fullSpectra (boolean ndarray)

Indicates if planet spectra have been captured
partialSpectra (boolean ndarray)

Indicates if planet partial spectra have been captured
propagTimes (astropy Quantity array)

Contains the last time the stellar system was propagated in units of day
lastObsTimes (astropy Quantity array)

Contains the last observation start time for future completeness update in units of day
starVisits (integer ndarray)

Contains the number of times each target was visited
starRevisit (float n×2 ndarray)

Contains indices of targets to revisit and revisit times of these targets in units of day
starExtended (integer ndarray)

Contains indices of targets with detected planets, updated throughout the mission
lastDetected (float n×4 ndarray)

For each target, contains 4 lists with planets’ detected status, exozodi brightness (in units of 1/arcsec2), delta
magnitude, and working angles (in units of arcsec)

DRM (list of dicts)
Design Reference Mission, contains the results of a survey simulation

nt flux (integer)
Observation time sampling, to determine the integration time interval

nVisitsMax (integer)
Maximum number of observations (in detection mode) per star

charMargin (float)
Integration time margin for characterization

seed (integer)
Random seed used to make all random number generation reproducible

43

WAint (astropy Quantity array)
Working angle used for integration time calculation in units of arcsec

dMagint (float ndarray)
Delta magnitude used for integration time calculation

5.13.2 run sim Method
The run_sim method uses the inherited modules to generate a survey simulation, without any explicit inputs and

outputs. It updates module attributes and populates the results in SurveySimulation.DRM.

Updated Module Attributes
SurveySimulation.DRM

Python list where each entry contains a dictionary of survey simulation results for each observation. The dictionary
may include the following key:value pairs (from the prototype):
star ind (integer)

Index of the observed target star
star name (string)

Name of the observed target star
arrival time (float)

Elapsed time since mission start when observation begins in units of day
OB nb (integer)

Number/index of the observing block
plan inds (integer ndarray)

Indices of planets orbiting the observed target star
det mode (dict)

Observing mode selected for detection
det time (astropy Quantity)

Integration time for detection in units of day
det status (integer ndarray)

List of detection status for each planet orbiting the observed target star, where 1 is detection, 0 missed detec-
tion, -1 below IWA, and -2 beyond OWA

det SNR (float ndarray)
List of detection SNR values for each planet orbiting the observed target star. Non-observable planets have
their SNR set to 0.

det fZ (astropy Quantity)]
Zodiacal surface brightnesses at detection in units of 1/arcsec2

det params (dict)
Dictionary of system params at detection for each planet orbiting the observed target star, including d (AU),
phi, fEZ (1/arcsec2), dMag, and WA (arcsec)

char mode (dict)
Observing mode selected for characterization

char time (astropy Quantity)
Integration time for characterization in units of day

char status (integer ndarray)
List of characterization status for each planet orbiting the observed target star, where 1 is full spectrum, -1
partial spectrum, and 0 not characterized

char SNR (float ndarray)
List of characterization SNR values for each planet orbiting the observed target star. Non-observable planets
have their SNR set to 0.

char fZ (astropy Quantity)]
Zodiacal surface brightnesses at characterization in units of 1/arcsec2

char params (dict)
Dictionary of system params at characterization for each planet orbiting the observed target star, including d
(AU), phi, fEZ (1/arcsec2), dMag, and WA (arcsec)

FA det status (integer)
Detection status for a false alarm signal (1 is a false alarm, 0 is not)

FA char status (integer ndarray)
(if false alarm) Characterization status for a false alarm signal, where 1 is full spectrum, -1 partial spectrum,

44

and 0 not characterized
FA char SNR (float ndarray)

(if false alarm) Characterization SNR value for a false alarm signal
FA char fEZ (astropy Quantity)

(if false alarm) Exo-zodi surface brightness for a false alarm signal in units of 1/arcsec2

FA char dMag (float)
(if false alarm) Delta magnitude for a false alarm signal

FA char WA (astropy Quantity)
(if false alarm) Working angle for a false alarm signal in units of arcsec

slew time (astropy Quantity)
(if occulter) Slew time to next target in units of day

slew angle (astropy Quantity)
(if occulter) Slew angle to next target in units of deg

slew dV (astropy Quantity)
(if occulter) Slew ∆V in units of m/s

slew mass used (astropy Quantity)
(if occulter) Slew fuel mass used in units of kg

sc mass (float)
(if occulter) Maneuvering spacecraft mass at the end of target observation in units of kg

det dV (astropy Quantity)
(if occulter) Detection station-keeping ∆V in units of m/s

det mass used (astropy Quantity)
(if occulter) Detection station-keeping fuel mass used in units of kg

det dF lateral (astropy Quantity)
(if occulter) Detection station-keeping lateral disturbance force on occulter in units of N

det dF axial (astropy Quantity)
(if occulter) Detection station-keeping axial disturbance force on occulter in units of N

char dV (astropy Quantity)
(if occulter) Characterization station-keeping ∆V in units of m/s

char mass used (astropy Quantity)
(if occulter) Characterization station-keeping fuel mass used in units of kg

char dF lateral (astropy Quantity)
(if occulter) Characterization station-keeping lateral disturbance force on occulter in units of N

char dF axial (astropy Quantity)
(if occulter) Characterization station-keeping axial disturbance force on occulter in units of N

5.13.3 next target Method
The next_target method finds index of next target star and calculates its integration time. This method chooses the

next target star index based on which stars are available, their integration time, and maximum completeness. Also updates
DRM. Returns None if no target could be found.

Input
old sInd (integer)

Index of the previous target star (set to None for the first observation)
mode (dict)

Selected observing mode (from OpticalSystem)

Output
DRM (dict)

Dictionary containing survey simulation results
sInd (integer)

Index of next target star. Defaults to None.
det intTime (astropy Quantity)

Selected star integration time for detection in units of day. Defaults to None.

45

5.13.4 observation detection Method
The observation_detection method determines the detection status and updates the last detected list and the

revisit list.

Input
sInd (integer)

Integer index of the star of interest
intTime (astropy Quantity)

Selected star integration time in units of day. Defaults to None.
mode (dict)

Selected observing mode (from OpticalSystem)

Output
detected (integer ndarray)

Detection status for each planet orbiting the observed target star, where 1 is detection, 0 missed detection, -1 below
IWA, and -2 beyond OWA

fZ (astropy Quantity)
Zodiacal surface brightnesses at detection in units of 1/arcsec2

systemParams (dict)
Dictionary of time-dependant planet properties averaged over the duration of the integration

SNR (float ndarray)
Detection signal-to-noise ratio of the observable planets

FA (boolean)
False alarm (false positive) boolean

5.13.5 observation characterization Method
The observation_characterization method finds if characterizations are possible and relevant information.

Input
sInd (integer)

Integer index of the star of interest
mode (dict)

Selected observing mode (from OpticalSystem)

Output
characterized (integer ndarray)

Characterization status for each planet orbiting the observed target star including False Alarm if any, where 1 is
full spectrum, -1 partial spectrum, and 0 not characterized

fZ (astropy Quantity)
Zodiacal surface brightnesses at characterization in units of 1/arcsec2

systemParams (dict)
Dictionary of time-dependant planet properties averaged over the duration of the integration

SNR (float ndarray)
Characterization signal-to-noise ratio of the observable planets

char intTime (astropy Quantity)
Selected star characterization time in units of day

5.13.6 calc signal noise Method
The calc_signal_noise method calculates the signal and noise fluxes for a given time interval.

Input
sInd (integer)

Integer index of the star of interest
pInds (integer)

Integer indices of the planets of interest

46

t int (astropy Quantity)
Integration time interval interval in units of day

mode (dict)
Selected observing mode (from OpticalSystem)

Output
Signal (float)

Counts of signal
Noise (float)

Counts of background noise variance

5.13.7 update occulter mass Method
The update_occulter_mass method updates the occulter wet mass in the Observatory module, and stores all the

occulter related values in the DRM array.

Input
DRM (dicts)

Contains the results of survey simulation
sInd (integer)

Integer index of the star of interest
t int (astropy Quantity)

Selected star integration time (for detection or characterization) in units of day
skMode (string)

Station keeping observing mode type

Output
DRM (dicts)

Contains the results of survey simulation

5.14 Survey Ensemble
The Survey Ensemble module’s only task is to run multiple simulations. While the implementation of this module is

not at all dependent on a particular mission design, it can vary to take advantage of available parallel-processing resources.
As the generation of a survey ensemble is an embarrassingly parallel task—every survey simulation is fully independent and
can be run as a completely separate process—significant gains in execution time can be achieved with parallelization. The
baseline implementation of this module contains a simple looping function that executes the desired number of simulations
sequentially, as well as a locally parallelized version based on IPython Parallel.

Depending on the local setup, the Survey Ensemble implementation can save significant time by cloning survey module
objects and reinitializing only those sub-modules that have stochastic elements (i.e., the simulated universe). This is currently
achieved with the reset_sim method in SurveySimulation.

Another possible implementation variation is to use the Survey Ensemble module to conduct investigations of the effects
of varying any normally static parameter. This could be done, for example, to explore the impact on yield in cases where the
non-coronagraph system throughput, or elements of the propulsion system, are mischaracterized prior to launch. This SE
module implementation would overwrite the parameter of interest given in the input specification for every individual survey
executed, and saving the true value of the parameter used along with the simulation output.

The parallel implementation in the Prototype is geared towards an ipyparallel-based parallelization scheme, where a
single method is asynchronously mapped to n workers. The method is called run_one and takes as inputs two keyword
parameters:

genNewPlanets (bool)
Generate new planets for every run (defaults true).

rewindPlanets (bool)
Reset all planets to their initial conditions on each sim (defaults True, is ignored if genNewPlanets is True).

Acknowledgements
EXOSIMS development is supported by NASA Grant Nos. NNX14AD99G (GSFC) and NNX15AJ67G (WPS).

47

	Introduction
	Purpose and Scope

	Overview
	Global Specifications
	Python Packages
	Coding Conventions
	Module Type
	Callable Attributes

	Backbone
	Specification Format
	Modules Specification
	Universal Parameters

	Module Specifications
	Star Catalog
	Star Catalog Object Attribute Initialization

	Planet Population
	Planet Population Object Attribute Initialization
	Planet Population Value Generators

	Planet Physical Model
	Optical System
	Optical System Object Attribute Initialization
	Cp_Cb_Csp Method
	calc_intTime Method
	calc_minintTime Method
	calc_dMag_per_intTime Method
	ddMag_dt Method

	Zodiacal Light
	Zodiacal Light Object Attribute Initialization
	fZ Method
	fEZ Method

	Background Sources
	dNbackground Method

	Post-Processing
	Post-Processing Object Attribute Initialization
	det_occur Method

	Completeness
	Completeness Object Attribute Initialization
	target_completeness Method
	gen_update Method
	completeness_update Method
	comp_per_intTime Method
	dcomp_dt Method

	Target List
	Target List Object Attribute Initialization
	populate_target_list Method
	filter_target_list Method
	Target List Filtering Helper Methods
	starprop Method
	starMag Method
	stellarTeff Method

	Simulated Universe
	Attributes
	gen_physical_properties Method
	init_systems Method
	propag_system Method
	dump_systems Method
	dump_system_params Method
	revise_planets_list Method
	revise_stars_list Method

	Observatory
	Observatory Object Attribute Initialization
	orbit Method
	solarSystem_body_position Method
	keepout Method
	distForces Method

	Time Keeping
	Time Keeping Object Attribute Initialization
	allocate_time Method
	next_observing_block Method
	mission_is_over Method

	Survey Simulation
	Survey Simulation Object Attribute Initialization
	run_sim Method
	next_target Method
	observation_detection Method
	observation_characterization Method
	calc_signal_noise Method
	update_occulter_mass Method

	Survey Ensemble

