

Starshade Rendezvous Probe Study AAS Update January 9, 2018

Pls: Sara Seager (MIT), Jeremy Kasdin (Princeton) Study lead: Andrew Gray (JPL)

Team Membership

Study Leads

NAME	AFFILIATION
Sara Seager	MIT
	Princeton
Jeremy Kasdin	University
Andrew Gray	JPL

Co-ls

NAME	AFFILIATION
Jeff Booth	JPL
Matt Greenhouse	GSFC
Doug Lisman	JPL
Bruce Macintosh	Stanford University
Stuart Shaklan	JPL
Maggie Turnbull	Global Sci.
Melissa Vess	GSFC
Steve Warwick	NGC
David Webb	JPL

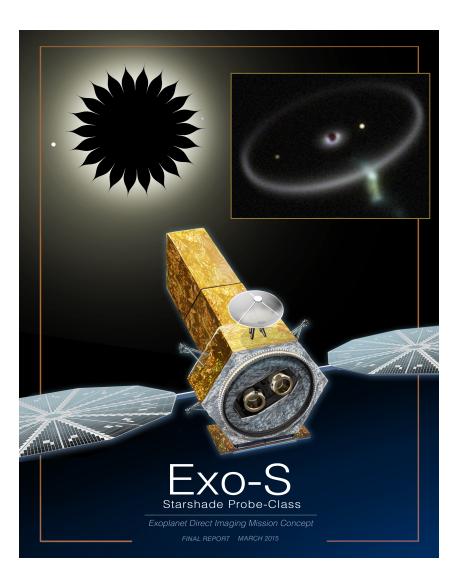
Collaborators

NAME	AFFILIATION
Jon Arenberg	NGC
Shawn Domagal-	
Goldman	GSFC
Sergi Hildebrandt	JPL
Alina Kiessling	JPL
Nikole Lewis	StScI
Jason Rhodes	JPL
	University of
Leslie Rogers	Chicago
Aki Roberge	GSFC
Andrew Romero-	
Wolf	JPL
Dmitry Savransky	Cornell University
Chris Stark	StScI
John Ziemer	JPL

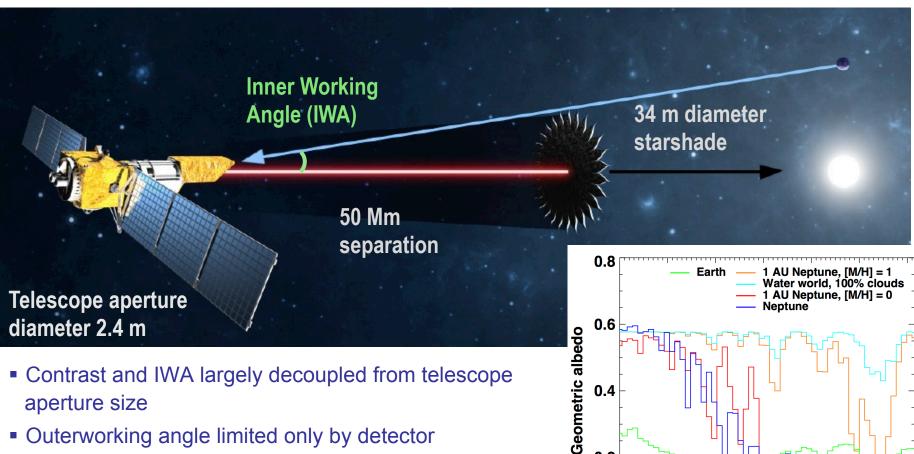
Starshade History (1960-2013)

- Proposed by L. Spitzer in 1962
- Revisited each decade, including a revitalization by W. Cash in 2000s

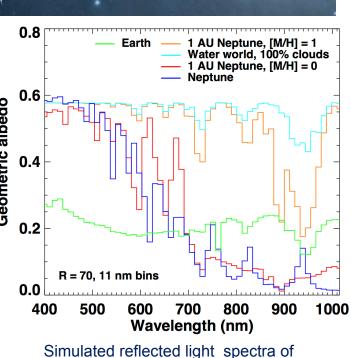
Probe Study (2013-2015)


National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology


- Directed by NASA HQ to develop a mission concept under \$1B, with other programmatic constraints
- The Probe Study two concepts
 - The Dedicated Mission", a 30 m Starshade and 1.1 m telescope colaunches
 - The Rendezvous Mission, 34 m Starshade launches and meets up with WFIRST

Other Studies (2015-present)

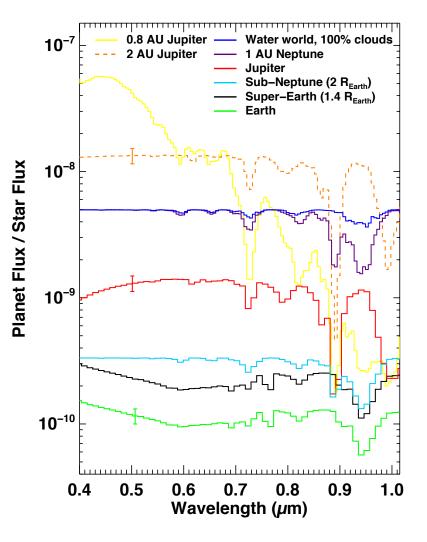

- Extended Probe Study (2015)
- Starshade Readiness WG (2016)
- HabEx Flagship Study (present)

National Aeronautics and Space Administration Jet Propulsion Laboratory **Starshade Rendezvous Basics California Institute of Technology**

- Outerworking angle limited only by detector
- High throughput, broad wavelength bandpass
- High quality telescope not required means wavefront correction unnecessary
- Retargeting requires long starshade slews (days to weeks)



exoplanets convolved to R=70

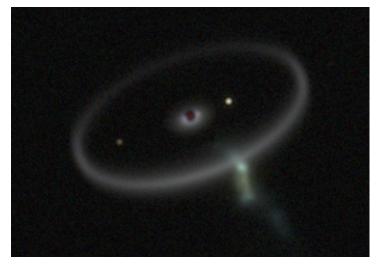

Petal prototype used for manufacturing tolerance verification tests. Credit: NASA/JPL

Exo-S Science Goals

Simulated spectra for the Rendezvous mission, with three representative 10% error bars for SNR=10.

Deremetere	Obs	erving Ba	Inds	
Parameters	Blue Green Red			
Bandpass (nm)	425-602	600-850	706-1000	
IWA (mas)	70	100	118	
Separation (Mm)	50	35	30	

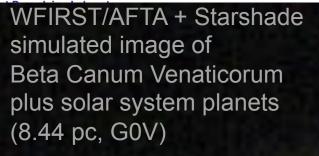
- 1) Discover new exoplanets from giant planet down to Earth size
- 2) Characterize new planets by spectra (*R*=10 to 70)
- 3) Characterize known giant planets by spectra (*R*=70) and constrain masses
- Study planetary systems including circumstellar dust in the context of known planets


A DRM "proof of concept" shows feasbility

Study Goals: Update the previously completed Starshade Rendezvous concept study

Science and Observing Strategy

- New scientific vision: "Deep Dive" direct imaging exploration of planetary systems orbiting the nearest sun-like stars in a search for Earth-like planets
- Assess the full science potential of each system including the diversity of planets and locations of dust/asteroid belts
- (Incorporate findings from the WFIRST SITs for complementarity with CGI science)



WFIRST/AFTA + Starshade simulated image of Beta Canum Venaticorum 8.44 pc, G05 plus solar system planets. Image credit: M. Kuchner

- Update EXO-S Study with advances in S-5 Technology Project and W-First Accommodation Study
- JPL and GSFC are internally investing in additional maturation
 - Increase maturity of the study report and engineering concept definition

Hypothetical dust ring at 15 AU

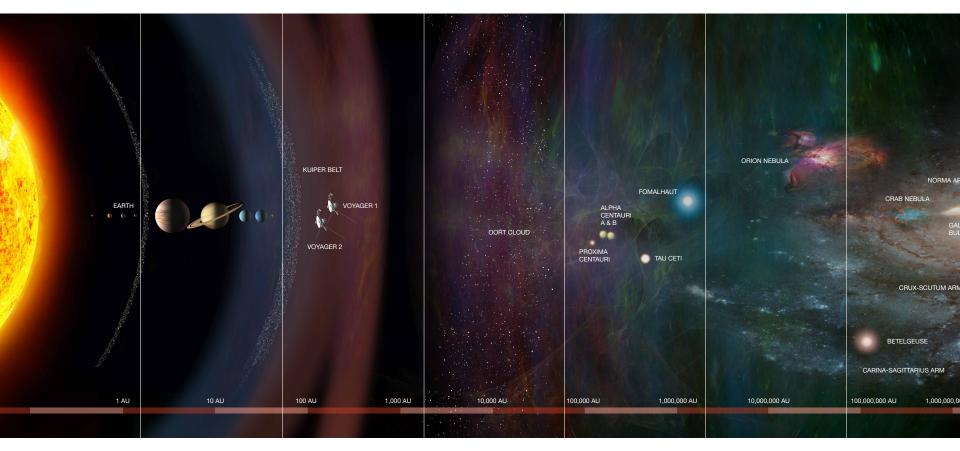
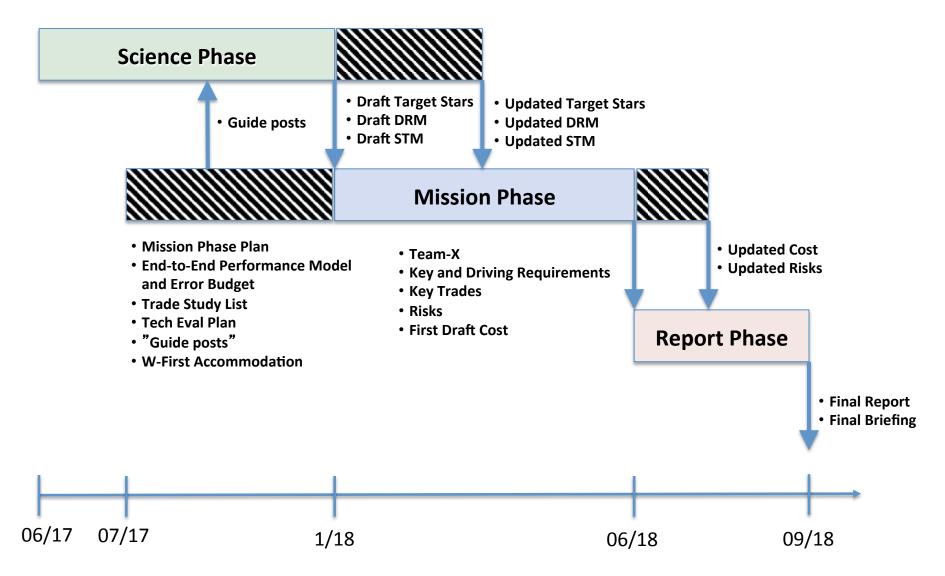

Background galaxy

Image credit: M. Kuchner

Starshade Rendezvous Probe

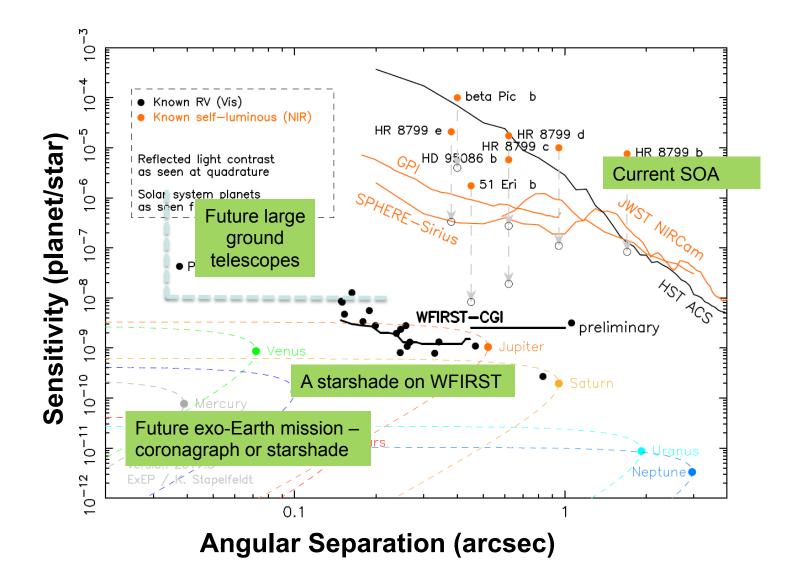
Image credit: JPL

Key Science Activities

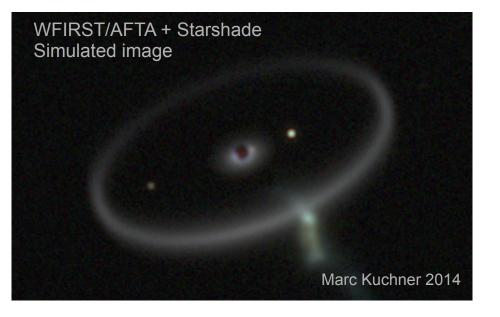

Milestone	Date	Location
Study Kick-off	07-20-17	Telecon
Science Working Meeting	08-02/03-17	Pasadena, CA
Science Meeting: Giant Planet Metallicity	10-12/13-17	Newark, NJ
Science Meeting: Biosignature Gases	10-31-17	Pasadena, CA
Science Meeting: Identifying Water	12-08-17	Cambridge, MA
Science Meeting: Dust Disks	01-12-18	National Harbor, MD
Science Meeting: Science Traceability Matrix	03-??-18	Pasadena, CA

- Weekly science telecons
- Mission phase is ramping up

Study Top Level Schedule

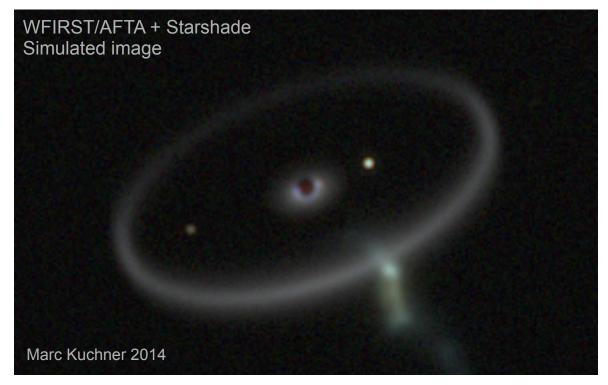


National Aeronautics and Space Administration Jet Propulsion Laboratory Colifernia Institute of Technology


State of Art vs Needs

Exo-S Summary

WFIRST/AFTA can be made starshade ready with minimal modification to instrumentation and spacecraft

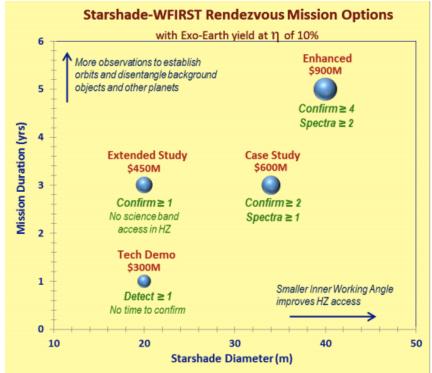

- Contrast and IWA accomplished by the starshade and not the telescope
- A compelling, flexible scientific program
 - Emphasis can be placed on discovery of exoEarths, or on characterization of larger planets.
- Starshade design and requirements
 - Design has been optimized for IWA and limiting sensitivity as well as engineering constraints
 - Tolerances of petal shape and deployment positions are typically in the range of 10s to 100s of microns
 - Several key starshade requirements have already been demonstrated

Exo-S Summary

- WFIRST/AFTA can be leveraged for a unique and timely opportunity
 - The Starshade Rendezvous Mission can access up to 50 target stars for exoEarths in the HZ
 - WFIRST/AFTA starshade readiness requires minimal modification
 - Starshade technology is on track for TRL 5 by 2017 for a new start by 2018
 - Rendezvous Mission cost estimate \$627 M

Introduction: History

Extended Probe Study (2015)

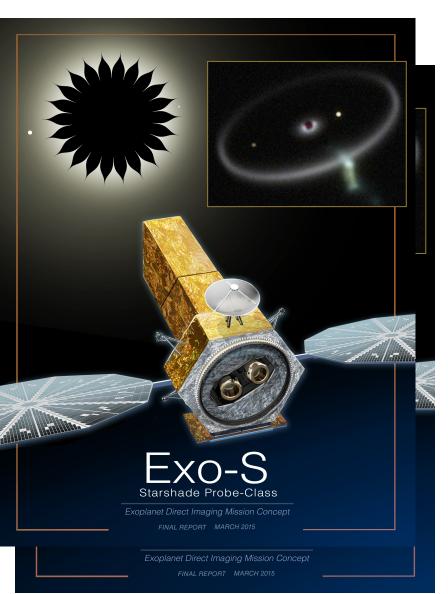

- Designs outside of the Probe-class
- 20 m Starshade
 <u>https://exoplanets.nasa.gov/</u> internal_resources/225/

• SSWG (2016)

- Starshade Readiness Working Group
- Goal: recommendation for a plan to validate starshade technology
- Conclusion: no space-based technology demonstration needed
- <u>https://exoplanets.nasa.gov/exep/studies/</u>
 <u>sswg/</u>

Note: Exo-S Probe Update (2017)

- Report changes since Exo-S report (science cases, yields, technical readiness, costs)
- No Rendezvous, focused on stand-alone
 Dedicated Mission two spacecraft co-launch
- E. Mamajek, lead



National Aeronautics and Space Administration

Jet Propulsion Laboratory California Institute of Technology

- Directed by NASA HQ to develop a mission concept under \$1B, with other programmatic constraints
- The Probe Study two concepts
 - The Dedicated Mission", a 30 m Starshade and 1.1 m telescope colaunches
 - The Rendezvous Mission, 34 m Starshade launches and meets up with WFIRST
- Science case included
 - Search for new exoplanets from giant down to Earth-size
 - Spectra of known giant exoplanets
 - Circumstellar disks
 - DRM was intended as a sample observation strategy

	λ (nm)	BW	Δλ	λ _{min} (nm)	λ _{max} (nm)
	488.5	26.0%	127	425	552
Starshade	707.5	26.1%	185	615	800
Science	728	19.8%	144	656	800
Bands	884.5	26.1%	231	769	1000
	910	19.8%	180	820	1000

Key Capabilities

Instruments: Wide-Field Imager, Integral Field Spectrograph, Guide Camera

Case Study	Parameters	(Observing Bands		
Case Study		Blue	Green	Red	
Rendezvous Mission	Bandpass (nm)	425-602	600-850	706-1000	
20m inner disk	IWA (mas)	70	100	118	
28 7m petals	Separation (Mm)	50	35	30	
Dedicated Mission	Bandpass (nm)	400-647	510-825	618-1000	
16m inner disk	IWA (mas)	80	100	124	
22 7m petals	Separation (Mm)	39	30	25	

FoV (arcsec)		Throughput	
Imager	IFS	Imager IFS	
10	2	28%	22%
60	3	51%	42%

Contrast at inner working angle consistent w/ error budget

- Dedicated: 5 x 10⁻¹⁰
- Rendezvous: 1 x 10⁻¹⁰

Exo-S Final Report to NASA APS - March 18, 2015

Design Reference Mission Strategies • Planet detection

- Green band observation with IFS
- Divided into 3 channels for multi-color imaging
- SNR = 4 per channel

Planet characterization

- SNR = 10, R=10 to 70 per spectral resolution element

If dust level high, obtain wide-field image then move on

Three target prioritization strategies studied

Study Case	Theme	Mission	Propulsion	Defining Characteristic
Case 1	"Earths in HZ"	1.1 m Dedicated	SEP	Efficient observations based on Stellar Luminosity
Case 2	"Maximum Planet Diversity"	1.1 m Dedicated		Observe all stars to limiting sensitivity lim Δ mag=26 (contrast of 4e-11)
Case 3	"Earths in HZ"	2.4 m Rendezvous	Bi-nron	Efficient observations based on Stellar Luminosity

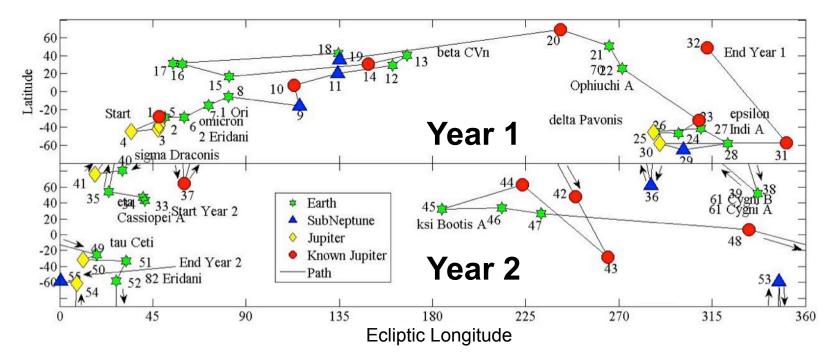
Exo-S Final Report to NASA APS - March 18, 2015

Key Capabilities

Instruments: Wide-Field Imager, Integral Field Spectrograph, Guide Camera

Daramatara	Observing Bands				
Parameters	Blue Green Red				
Bandpass (nm)	425-602	600-850	706-1000		
IWA (mas)	70	100	118		
Separation (Mm)	50	35	30		

FoV (a	rcsec)	Throughput	
Imager	IFS	Imager IFS	
10	2	28%	22%


Contrast at inner working angle consistent with error budget 1 x 10⁻¹⁰

Observing Sequence

- 1. Schedule known giant planet observations
- 2. Fill in gaps on sky with highest priority blind search target
- 3. Repeat with lower priority targets until fuel or time limit reached
- 4. Reserve 3rd year for follow-up / additional characterization revisits

Two-year sequence, 55 stars visited

12 known giant planets. Blind search targets: 28 Earths, 7 sub-Neptunes, 8 Jupiters