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The WEIRST CGI Instrument Characterizing Bright Disks in the Visible
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Radius (arcsec) (FOV). TW Hya has a brightness asymmetry due to a shadow Figure 4: (Top) Empirical phase function of disks with 3 dust assumed .for exo-zodis. In general, cold dust is brighter, and the CGl will
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odi IS Figure 1:Limiting surface brightness of the CGI/HLC (red line), assuming a visible to the CGlI, which can continue to track the shadow through the same disks normalized to CGI Filter 1 (575 nm). CGl which will start to be dominated by transport dynamics such as Poynting-
detection limit of SNR=3/ | and i o4 h f tod the mid 2020’s to beter characterize Filter 2 (825 nm) is also shown. Color and phase functions Robertson drag. The box labeled WFIRST shows the rough parameter space
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performance. For comparison, we have overplotted a 1-D dust disk model can be used to help constrain the composition of dust.

(black line) with a surface brightness of 5 times the Solar System zodiacal dust

Indirectly Detecting Planets
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Figure 2: Same as Figure 1, but for Tau Ceti, which is much closer and was 0.1 110 Megry 1 | 10 Meaamy | | -
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S U rfa Ce b rl g htn eSS Of eXO'ZOd I CO nta m I n atl O n fO r th e d I I’e Ct I m ag I n g Of Figure 6: We use the Wisdom (1980)[5] resonance overlap criterion to estimate gap widths in Figure 7: We estimate the width of gaps caused by various planet masses protoplanetary disks by
debris disks caused by different planets at 10 pc. The HLC and SPC masks will observe disk assuming width of ~2R;;[6]. The HLC and SPC masks will observe disk gaps from proto-Jupiters and
Ea rths gaps from Super-Earths and Jupiters at <12 AU. Saturns at >15 AU, while for bright disks gaps from less massive planets can be observed in the outer
parts of disks.
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